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Abstract

The theory of Markov categories is a new synthetic approach to probability theory

introduced by Tobias Fritz in 2019. A particular important class of Markov cate-

gories are representable such as Stoch, the category of measurable spaces and Markov

kernels. We give a self-contained introduction to this framework and prove some new

results about the relationship between the existence of conditionals in representable

Markov categories and the Beck-Chevalley property on monads.
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Chapter 1

Introduction

The use of category theory has become pervasive in modern mathematics. One allur-

ing explanation for this is that the essence of an object is captured in its relationship

to other objects. More informally we have the common adage “you know a person

by the company they keep”. Category theory has been especially successful in fields

such as topology, algebraic geometry, commutative algebra, and homological algebra,

to name a few. However, it is much less used in analysis where we often care more

about the internal structure of the objects we study.

Recently there has been an increasing interest in trying to apply category to ana-

lytical fields such as probability theory. The synthetic framework of Markov categories

is the most recent take on categorical probability theory. It was first introduced by

Fritz in [5]. Some of the precursors to that paper is work done by Golubtsov ([9],

[10], [11]) as well as by Cho and Jacobs [2].

The goal of this thesis is to relate the existence of conditionals in Markov categories

with properties of a certain monad that “represent” it. A secondary goal is that it can

serve as self-contained introduction to Markov categories. Someone who has taken a

first course in category theory should be able to gain a solid understanding of Markov

categories and how they are used.

More specifically, this thesis contains the following new results:

• Proposition 4.14 explicitly constructs the equivalence between the partial eval-

uation relation and second-order stochastic dominance. Other source (see e.g.

[7]) mentions it vaguely in passing, but we make it explicit here.

• Lemma 5.5 shows that the multiplication of a monad on an a.s.-compatibly

representable Markov category with conditionals is weakly Cartesian.
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• Theorem 5.6 is the main theorem of the thesis and extends Lemma 5.5 to

show that the monad of an a.s.-compatibly representable Markov category with

conditionals and that satisfies the equalizer principle is BC.

• Corollary 5.7 applies Theorem 5.6 to show that the Giry monad on BorelStoch

is BC.

• Corollary 5.9 uses Theorem 5.6 to show that the second-order stochastic domi-

nance relation on C(Θ, A) is transitive and hence C(Θ, A) ∈ Ord for all Θ, A ∈ C.

Outline

The thesis is organized as follows:

• Chapter 1 is the introduction.

• In Chapter 2 we give a brief introduction to the graphical formalism of string

diagrams.

• In Chapter 3 we present a mainly self-contained introduction to Markov cate-

gories and their properties.

• In Chapter 4 we introduce partial evaluations and relate them to representable

Markov categories.

• In Chapter 5 we present our new findings on the relationship between the exis-

tence of conditionals and the BC property on monads.

Prerequisites

We will assume basic familiarity with category theory at the level of [18]. You should

at the very least be comfortable with monads and not be frightened by the sentence

“a monad is a monoid in the category of endofunctors”. It is also helpful to know

something about bicategories, but this is not crucial.
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Chapter 2

A Briefer on String Diagrams for
SMCs

A big benefit of graphical formalisms is that they often hide much of the complicated

bookkeeping, enabling us to focus on the most essential parts. Consider for example

associativity of composition in a category: given morphisms f : A → B, g : B → C,

and h : C → D, it is the statement that

h ◦ (g ◦ f) = (h ◦ g) ◦ f. (2.1)

In the graphical formalism of string diagrams (which will shortly be properly intro-

duced) this is translated into the trivial statement

f

g

h

D

A

f

g

h

D

A

= (2.2)

The graphical notation is justified precisely because composition is associativity. It

is the same reason we can also write

h ◦ g ◦ f (2.3)

without worrying about whether the resulting morphism is well defined. So, what is

the big difference? Why not just use the notation in Equation 2.3? You certainly

can, but the point is that it is convenient to have a formalism which reflects the

underlying features of the things you work with. To further illustrate this, consider

the interchange law as it applies to symmetric monoidal categories. It states that
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composing morphisms horizontally and then vertically is the same as composing them

vertically and then horizontally. The equation is

(f1 ◦ f2)⊗ (g1 ◦ g2) = (f1 ⊗ g1) ◦ (f2 ⊗ g2). (2.4)

There is no way to do the same trick here as in the case of associativity. You are

forced to pick between one of the two ways of writing it, and there is no canonical

choice. On the other hand, the string diagrammatic version of Equation 2.4 is given

by the following trivial looking statement

f1

f2

g1

g2

f1

f2

g1

g2
= (2.5)

Using string diagrams the two sides of Equation 2.4 become notationally equivalent.

We are no longer forced into making an arbitrary choice, the formalism does this

bookkeeping internally. This bookkeeping feature has a cascading effect. Proofs

which would be extremely tedious to write down with the traditional approach tend

to become much more pleasant to work with as string diagrams. The author admits

that this is a subjective viewpoint, but hopes that the remainder of this thesis might

serve as an example of this claim.

2.1 The Formalism

For the remainder of this section, let (C,⊗, I) be a symmetric monoidal category. It

is enlightening to think of C as a “theory of resources”. Following Coecke et al. [3]

we think of the objects X, Y ∈ C as resources and morphisms of the form f : X → Y

as a way of transforming the resource X into the resource Y .

Definition 2.1. Let f : X → Y and g : X ⊗ Y → A ⊗ B be morphisms in C. We

draw f as follows

Y

X

f

When the domain and codomain is clear from the context we draw f as

f
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When f is the identity on X, we draw it as the line

X

The morphism g is drawn as follows

h

X Y

A B

This way of drawing morphisms lends itself well to the resource theoretic under-

standing of symmetric monoidal categories. We can think of the whole morphisms

as an assembly line that gets resources along the input wire and sends the finished

product along the output wire.

Now, if we have two assembly lines, we can either connect the end of one to the

beginning of the other, or put them next to each other. Of course, connecting the

output and input forces the transformed resource of one machine to be the input of

the other. More formally we have the following definitions.

Definition 2.2. Let f : X → Y and g : Y → Z be two morphisms in C. We draw

their composition g ◦ f : X → Z as the following diagram

f

g

X

Y

Z

or f

g

X

Z

Definition 2.3. Let f : X → A and g : Y → B be morphisms in C. We draw their

parallel composition f ⊗ g : X ⊗ Y → A⊗B as

f g

X

A

Y

B
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The first definition is akin to putting one assembly line after the other, while the

second definition is akin to putting them next to each other.

Take care to notice the difference between the two ways of drawing a morphism

X ⊗Y → A⊗B presented in the above definitions. Parallel composition is supposed

to highlight the independence of the two morphisms. That is to say, the two assembly

lines do not depend on each other. On the other hand, the morphism g in Defini-

tion 2.1 is akin to having an assembly line with one machine that has two inputs and

two outputs.

From the resource theoretic point of view, the monoidal unit is the same as the

“empty resource”. The semantics of the monoidal product in X ⊗Y is that you have

both resource X and resource Y . Seeing as X ⊗ I = X = I ⊗X it makes sense that

we should not draw the monoidal unit. Hence

X

represents both X, I ⊗ X, and X ⊗ I. In cases where we do want to highlight the

monoidal unit, such as in a discarding map X → I we draw it as a dotted line, i.e.,

I

X

Of particular interest are maps of the form p : I → X, also referred to as states.

We draw these as

p

X

Finally, the braiding of the monoidal category is represented by the following diagram

Y X

X Y
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In a symmetric monoidal category, the braiding is its own inverse and hence we

have the equation

Y X

X Y

=

Y X

X Y

2.2 Commutative Comonoids

An important notion we will need for later is that of a commutative comonoid. Given

an object X in a monoidal category (C,⊗, I), a commutative comonoid structure

on X consists of the following things: maps X → X ⊗ X and X → I called the

comultiplication and counit, or copy and discard. For the purpose of Markov

categories we denote them by copy : X → X ⊗X and del : X → I.

In terms of string diagrams, we represent these maps as follows:

copy =

X X

X

,

and

del =

X

These maps need to satisfy the following equations (commutativity, counitality,

and coassociativity)

= (2.6)

= = (2.7)

= (2.8)
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2.3 Copy-Discard Categories

Definition 2.4. A copy-discard category is a symmetric monoidal category where

• every object is equipped with a distinguished commutative comonoid structure,

• the comonoid structure is compatible with the tensor product in the following

ways:

For all objects X, Y ∈ C we have

X ⊗ Y X ⊗ Y

X ⊗ Y

=

X Y X Y

X Y

(2.9)

We also have the conditions that

X ⊗ Y

=

X Y

(2.10)

I

= =

I I

I

(2.11)

Example 2.5. Take Set with its usual Cartesian structure. Let the copy map be the

diagonal

∆X : X → X ×X

x 7→ (x, x)

and the discard map be the unique map

! : X → {∗}

x 7→ ∗

Disregarding some details about the technical implementation of Set (i.e., how you

choose to represent things like tuples in terms of sets) the equations for commuta-

tivity, counitality, and coassociativity are all trivial. Similarly the compatibility of

this comonoid structure with the monoidal product is straightforward, but tedious, to

verify.
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Generalizing the above example one gets the following result.

Proposition 2.6. Every Cartesian symmetric monoidal category has a canonical

interpretation as a CD category.

Proof. Let (D,×, I) be a Cartesian symmetric monoidal category. Define the copy

map componentwise by

copyX := (1X , 1X) : X → X ×X. (2.12)

Now, as D is Cartesian we must have that I is the empty product and hence is

terminal. Thus, the discard map is componentwise defined to be

delX := ! : X → I. (2.13)

Commutativity, counitality, and coassociativity, as well as compatibility with the

monoidal product, all follow from the universal properties of the product, ×, and the

terminal object, I.
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Chapter 3

Markov Categories

Having introduced the language of string diagrams we can now give a self-contained

introduction to the theory of Markov categories. We have favoured an example driven

approach and tried to include examples where they might help build intuition. The

main sources for this chapter is [5] and [7] which the reader is invited to look at for

a more technical treatment.

3.1 Basic Notions

Definition 3.1. A Markov category is a CD category (C,⊗, I) where any of the

following equivalent conditions hold

(i) the monoidal unit I is a terminal object;

(ii) the discard maps del : X → I are part of a natural transformation del : 1C =⇒
I;

(iii) for every f : X → Y in C the following equality holds:

f = (3.1)

Lemma 3.2. The conditions presented in Definition 3.1 are equivalent.

Proof. (i) =⇒ (ii): Assume that the monoidal unit I is terminal. We must show that

for all f : X → Y in C, the following diagram is commutative

X Y

I I

f

delY delY

1I
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This follows immediately from the assumed uniqueness of the map delY : Y → I.

(ii) =⇒ (iii): This is just a restatement in diagrams of the naturality of del.

(iii) =⇒ (i): Let f : X → I be a morphism. Equation 3.1 tells us that delI ◦ f =

delX . However, by Equation 2.11 we have that delI = 1I and hence it follows that

f = delX .

Thinking in terms of resource theories, Equation 3.1 tells us that, in a Markov

category, transforming a resource and then discarding it is the same as just discarding

it. That is to say, there is only one way of discarding something.

Example 3.3. As the one point set {∗} is a terminal object in Set, the CD structure

from Example 2.5 makes Set into a Markov category.

Example 3.4. Consider the full subcategory FinSet of Set. Letting the monoidal

structure again be determined by the ussual Cartesian product of sets on object we get

a Markov structure on FinSet via the same copy and discard maps as in the previous

example.

Example 3.5. Take FinStoch, the category of finite sets with Markov kernels as

morphisms. That is to say, if f : X → Y is a morphism in FinStoch then f is a

stochastic matrix (fxy)x∈X,y∈Y where fxy is interpreted as the probability of outcome

y ∈ Y given the input x ∈ X. Composition of morphisms f : X → Y and g : Y → Z

amounts to doing matrix multiplication on the stochastic matrices. Using the notation

f(y|x) for fxy we have that

(gf)(z|x) =
∑
y∈Y

g(z|y)f(y|x) (3.2)

which one can also recognize as the Chapman-Kolmogorov equations.

Any ordinary function between finite sets can also be thought of as a Markov

kernel. In this case, all entries f(y|x) are either 0 or 1. In this way we get an

inclusion FinSet ↪→ FinStoch.

Now, the monoidal structure on FinStoch is the usual Cartesian product on objects,

while it is the tensor product of matrices on morphisms. More explicitly, for f : A→
X and g : B → Y we have that

(f ⊗ g)(x, y|a, b) = f(x|a)g(y|b). (3.3)
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The copy map copyX : X → X ×X is specified by

copyX(x1, x2|x0) =

{
1, if x1 = x2 = x0

0, else.
(3.4)

Similarly, the discard map delX : X → I is a vector with all ones, i.e.,

delX(|x) = 1. (3.5)

While it is possible to extend FinStoch to arbitrary measurable spaces there are

some technical problems with this approach. Consider the following question: is a

measure that assigns either 0 or 1 to each event (i.e., a measurable set) in a measure

space (X,A) a Dirac delta at a unique point? A positive answer to this is useful when

trying to specify a broader stochastic category.

Definition 3.6 ([15]). A measurable space X is called sober if every zero-one mea-

sure on X is the Dirac delta over a unique point. We denote the category of sober

measurable spaces and measurable functions by SoberMeas.

Example 3.7. The category SoberMeas is a Cartesian symmetric monoidal category,

and hence has a canonical CD structure. As the one point sober measurable space {∗}
is terminal it follows that SoberMeas is a Markov category.

Example 3.8. The category Stoch can intuitively be seen as an extension of FinStoch

to SoberMeas. More specifically, Stoch is specified via the following data

• Objects are sober measurable spaces, i.e., pairs (X,A) where X ∈ Set and A is

a sigma-algebra on X subject to the constraint of being sober.

• Morphisms (X,A) → (Y,B) are Markov kernels of entries k(B|x), for x ∈ X

and B ∈ B. That is to say, k(−|x) is a probability measure on (Y,B) for all

x ∈ X.

• The identity (X,A) → (X,A) is given by the Dirac delta, i.e.,

δ(A|x) =

{
1, if x ∈ A

0, else.
(3.6)

Importantly, the fact that we are working with sober measurable spaces ensures

us that the identity is well defined.
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• The composition of two kernels k : (X,A) → (Y,B) and h : (Y,B) → (Z, C) is

given by taking the Lebesgue integral, i.e.,

(hk)(C|x) =
∫
Y

h(C|y)k(dy|x) (3.7)

for all x ∈ X and C ∈ C. The equation above is sometimes called the Chapman-

Kolmogorov equation.

The monoidal and copy-discard structure on Stoch is an extension of the one on

FinStoch. On objects, the monoidal product is the product of measurable spaces while

on morphisms it is the tensor product of Markov kernels. More explicitly, given

f : (A,A) → (X, C) and g : (B,B) → (Y,D) we have that

(f ⊗ g)(C ×D|a, b) = f(C|a)g(D|b) (3.8)

for all C ∈ C, D ∈ D, a ∈ A, and b ∈ B.

The copy and discard maps also take on analogous forms as the ones in Equa-

tion 3.4 and Equation 3.5. That is to say,

copyX(A×B|x) =

{
1, if x ∈ A×B

0, else
(3.9)

and

delX(|x) = 1. (3.10)

An important feature that Stoch lacks is having conditionals. To remedy this we

need to focus on standard Borel spaces.

Definition 3.9. [16] Let (X,A) be a measurable space. We say that X is a standard

Borel space if it can be written as a Polish space with its Borel sigma-algebra. The

category of standard Borel spaces and measurable functions between them is denoted

by BorelMeas.

Remark 3.10. A topological space is called a Polish space, also known as a com-

pletely separably metrizable space, if the topology can be metrized by a complete and

separable metric.

Example 3.11. The Markov category BorelStoch is defined to be the full subcategory

of Stoch where the objects are standard Borel spaces.
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The attentive reader might have noticed a pattern in the previous examples: we

started with a “deterministic category”, e.g., FinSet, SoberMeas, BorelMeas, and then

we “added” randomness to the morphisms and got FinStoch, Stoch, and BorelStoch

respectively. This is not by accident and we will later see how this ties into the notion

of probability monads and representability.1

We now move on to discussing some important properties of Markov categories

that we will make heavy use of later.

Definition 3.12 ([7]). Let C be a Markov category. A morphism f : A→ X in C is

said to be deterministic if the following equality holds

XX

A

f

XX

A

f f
= (3.11)

The subcategory of C that consists of only deterministic morphisms is denoted by Cdet.

Example 3.13. In the case of FinStoch we have that FinStochdet ∼= FinSet. To see

why, first note that the equation in 3.11 spelled out in FinStoch becomes∑
x0∈X

copyX(x1, x2|x0)f(x0|a) =
∑

(a1,a2)∈A×A

f(x1|a1)f(x2|a2)copyA(a1, a2|a) (3.12)

The only contributing summands in the left hand side above is the ones where x1 =

x2 = x0. Similarly, the only contributing summands in the right hand side above is

the ones where a1 = a2 = a. Using x for x1 = x2 the above equation simplifies to

f(x|a) = f(x|a)f(x|a) (3.13)

and hence we must have that f(x|a) = 0 or f(x|a) = 1 which is how an ordinary

function looks like when we represent it as a stochastic map. Hence, deterministic

morphisms in FinStoch is the same thing as morphisms in FinSet.

In traditional probability theory we can take the marginal distribution of a col-

lection of random variables of a probability distribution. The analogous concept in

Markov categories is that of marginalization.

1The category FinStoch is technically not representable, but is very close to being and only fails
because the space of probability distributions on a finite set is not itself finite.
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Definition 3.14. Let p : A → X ⊗ Y be a joint morphism in a Markov category C.

The marginal morphisms pX : A→ X and pY : A→ Y are defined as follows:

pX :=

X

p

A

pY :=

Y

p

A

and (3.14)

Example 3.15. Consider FinStoch and a state p : {∗} → X × Y . The marginal

morphisms then recover the usual notion of a marginal distribution, i.e., we have

pX(x|) =
∑
y∈Y

p(x, y|) (3.15)

and

pY (y|) =
∑
x∈X

p(x, y|). (3.16)

One of the most important concepts of this thesis is that of conditionals which we

now define.

Definition 3.16. Let f : A → X ⊗ Y be a joint morphism in a Markov category

C. A map f |X : X ⊗ A → Y is called a conditional of f with respect to X if the

equation

f

X Y

A

=

A

f

f |X

YX

(3.17)

holds.

Example 3.17. We claim that FinStoch has conditionals. To see this, note that

Equation 3.17 takes the following form in FinStoch

f(x, y|a) = fX(x|a)f |X(y|a, x). (3.18)

Assuming fX(x|a) > 0 this can be rewritten as

f |X(y|a, x) =
f(x, y|a)
fX(x|a)

. (3.19)

Using this as the definition of f |X then gives us the Markov kernel we are looking for.

15



The following example is based on [5, Example 11.3]

Example 3.18. Does Stoch have conditionals? We stated earlier that this is not the

case. In fact, this was the reason why we introduced BorelStoch. Let us therefore see

why Stoch does not have conditionals.

First of all, given a probability measure ψ : {∗} → X⊗Y , a conditional probability

distribution ψ|X : X → Y would, by [5, Lemma 4.2] and Equation 3.17, have to satisfy

ψ(S × T |) =
∫
s∈S

ψ|X(T |x)ψ(dx) (3.20)

for T a measurable set in X and S a measurable set in Y . Such a ψ|X is called a

product regular conditional probability, and has been proven to exist whenever

Y is standard Borel, but not in general [5]. Thus, Stoch does not have conditionals,

but BorelStoch does.

Closely related to the concept of conditionals is that of a Bayesian inverse.

Definition 3.19. Let p : Θ → X and f : X → Y be morphism in C. A Bayesian

inverse of f with respect to p is a morphism f †
p : Θ⊗Y → X such that the following

equation holds
XY

f

Y X

=

q

Θ

f †
p

Θ

p

(3.21)

where q = p ◦ f . When p is clear from the context we shall drop the subscript p from

f †
p and just write f †.

Remark 3.20. A Bayesian inverse is a special case of a conditional. More specifi-

cally, it is the conditional of the left hand side in Equation 3.21 with respect to Y .

The intuition behind Equation 3.21 is that is a more general version of Bayes

theorem. To see why this is the case, consider the following concrete example.
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Example 3.21. In FinStoch the defining equation for a conditional becomes

q(y)f †(x|y) = p(x)f(y|x). (3.22)

Using the naive approach we can talk about “the probability” of an event with the

notation P (−). We can then rewrite the above equation as

P (y)P (x|y) = P (x)P (y|x) (3.23)

which is Bayes formula on the nose.

As Fritz et al. note in [7], conditionals are generally not unique. However, they

are unique up to almost sure equality [5].

Definition 3.22 ([7]). Let p : A → X be a morphism and f, g : X → Y two parallel

morphisms. We say that f and g are p-almost surely equal, denoted f =p-a.s. g, if we

have

f

YX

p

A

g

YX

p

A

= (3.24)

Example 3.23 ([7]). In BorelStoch, Definition 3.22 gives the standard notion of

almost surely equality. More specifically, given Markov kernels f, g : (X,ΣA) →
(Y,ΣB) and a probability measure ν : I → X, the relation f =ν-a.s. g Equation 3.24

becomes the condition ∫
S

f(T |x)ν(dx) =
∫
S

g(T |x)ν(dx), (3.25)

for all S ∈ ΣX and T ∈ ΣY . This is the same as saying that f(T |−) and g(T |−) are

ν-almost everywhere equal for all T .

A useful property of Markov categories with conditionals is positivity.

Definition 3.24 ([5]). We say that a Markov category C is positive if whenever

f : X → Y and g : Y → Z are such that g ◦ f is deterministic, then

f

g

f

g

f

Z Y

X X

Z Y

= (3.26)
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Remark 3.25. If one instead requires Equation 3.26 to hold p-a.s. for some p : Θ →
X then one says that C is relative positive.

Proposition 3.26 ([5]). Markov categories with conditionals are positive.

Proof. The following proof is adapted from [5].

Let C be a Markov category with conditionals. We then have

XZ

g

Z Y

=

f

X

g†

X

f

g (3.27)

and the determinism assumption further gives

YZ

=

f

X

g†

g

YZ

f

X

g†

g

f

g
=

YZ

f

X

g†

g

f

g
=

YZ

f

X

g

f

g

YZ

f

X

g

f
=

(3.28)

as desired.

3.2 Probability Monads

We previously described how we could “add randomness” to a category in which all

morphisms are deterministic. A formal way to do this is through monads, and the

type of monads we will look at can be colloquially referred to as probability monads.

We will assume the reader is familiar with the usual notion of a monad and build
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?

coin 1 coin 2

heads tails heads tails

1/2 1/2

1/2 1/2 1 0

Figure 3.1: A random choice between a normal coin and one with heads on both
sides.

?

heads tails

3/4 1/4

Figure 3.2: The probability distribution obtained by summing over paths in Fig-
ure 3.1.

upon this by describing this new class of monads. Those unfamiliar with monads

should refer to classic sources such as [13], and [18], or the excellent treatment by [1].

The intuition behind probability monads is best grasped through concrete exam-

ples. Thus, imagine the following scenario: your friend presents you with two coins.

One coin is regular while the other one has heads on both sides. You choose a coin

at random and then flip it. The whole situation can be pictured as in Figure 3.1.

What we have here is a probability distribution of probability distributions and we

can write it as

q =
1

2
coin1 +

1

2
coin2 (3.29)

where

coin1 =
1

2
heads +

1

2
tails

coin2 = 1 heads + 0 tails.

However, we can simplify things by averaging probabilities to get the new proba-

bility distribution

p =
3

4
heads +

1

4
tails. (3.30)

This new distribution is pictured in Figure 3.2.

Summarizing the above:

1. We started with a set of outcomes, in this case X = {heads, tails}.
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2. We then created a new set DX which consisted of distributions on X and

considered two specific elements, coin1 and coin2.

3. In the choice between coin1 and coin2 we had a distribution of distributions,

i.e., an element of DDX.

4. We obtained an element of DX from DDX through averaging.

The attentive reader should recognize this as a monad in disguise.

Definition 3.27. Consider Set and define the distribution monad, also known as

the finitary Giry monad, (D,E, δ) on it as follows:

• Given X ∈ Set, DX is defined to be the set of functions p : X → [0, 1] such that

(i) p(x) ̸= 0 for only finitely many x ∈ X;

(ii)
∑

x∈X p(x) = 1.

We refer to elements of DX as finite distributions.

• Given f : X → Y , Df : DX → DY is defined to be the pushforward, i.e., for

p ∈ DX we have

Pf(p)(y) =
∑

x∈f−1(y)

p(x). (3.31)

• The multiplication E : PP =⇒ P is defined componentwise by averaging. More

specifically, given an element ξ ∈ DDX we have

EX(ξ)(x) =
∑
p∈DX

p(x)ξ(p). (3.32)

Note that this sum is finite since by definition ξ is only non-zero for finitely

many p ∈ DX.

• The unit δ : 1Set =⇒ P is defined componentwise for X ∈ Set by

δX(x) = δx (3.33)

where

δx(y) :=

{
1, if y = x,

0, else.
(3.34)
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It is straightforward to verify that E and δ satisfy the usual monad laws and we

leave the details to the interested reader.

The distribution monad is a prototypical probability monad, and we can use

it to characterize how a probability monad should look like more generally. For a

symmetric monoidal category (D,⊗, I) we generally say that a monad (P, µ, δ) on C

is a probability monad if

1. D is Cartesian, making it into a deterministic Markov category;

2. on objects P assigns a “collection of probability measures“ PX for each X ∈ D;

3. on morphisms P acts like the pushforward of measures;

4. the multiplication µ reduces measures over measures to measures;

5. the unit δ assigns the Dirac delta measure componentwise;

This is not a formal definition and is intended more to work as guideline for ascer-

taining whether you are dealing with something that can be considered a probability

monad. To help solidify this let us take a look at another probability monad.

Definition 3.28. Consider the category SoberMeas. The Giry monad (G, µ, δ) on

SoberMeas is defined as follows:

• Given X ∈ SoberMeas, GX is the space of probability of measures on X assigned

with the σ-algebra generated by the set of all evaluation maps

evU : GX → [0, 1]

P 7→ P (U),

where U ranges over all measurable sets in X.

• Given a measurable function f : X → Y , Gf : GX → GY is the pushforward

of measures, i.e., for P ∈ GX we have that

Gf(P ) = P ◦ f−1. (3.35)

• The multiplication is defined componentwise by

µX(Q)(U) =

∫
q∈GX

evU(q) dQ (3.36)

where Q ∈ GGX and U is a measurable set on X.
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• The unit is defined componentwise to be the Dirac measure, i.e.,

δX(x) = δx (3.37)

where δx is the Dirac measure on x ∈ X.

Remark 3.29. One can also define the Giry monad as an endofunctor P on BorelMeas.

For X ∈ BorelMeas, PX is the space of probability measures on the Borel subsets of

X. Moreover, PX is equipped with the weakest topology that make the integration

map

τ 7→
∫
X

f dτ (3.38)

continuous for any bounded, continuous, real valued function f : X → R. The multi-

plication µ : PP =⇒ P is componentwise defined by

µX(M)(A) =

∫
τ∈PX

τ(A)M(dτ) (3.39)

where M ∈ PPX and A is a Borel subset of X. The unit δ : 1BorelMeas =⇒ P is the

same as for the Giry monad on SoberMeas.

3.3 Representable Markov Categories

The importance of probability monads is that they give rise to representable Markov

categories via the Kleisli construction. For example, Kl(G) = Stoch where G is the

Giry monad on SoberMeas, and similarly, Kl(P ) = BorelStoch for P the Giry monad

on BorelMeas. Equally important is the other direction and we will give a classification

for when a Markov category is representable.

We first need some terminology on monoidal functors and monads.

Definition 3.30 ([17]). A lax monoidal functor (C,⊗, IC) → (D,⊗, ID) is a triple

(F, η,∇) such that:

(i) F : C → D is a functor;

(ii) The unit η : ID → FIC is a morphism of D;

(iii) The composition ∇ : F (−) ⊗ F (−) =⇒ F (− ⊗ −) is a natural transformation

of functors C× C → D;
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(iv) The following associativity diagram commutes for every X, Y, Z ∈ C:

(FX ⊗ FY )⊗ FZ FX ⊗ (FY ⊗ FZ)

F (X ⊗ Y )⊗ FZ FX ⊗ F (Y ⊗ Z)

F ((X ⊗ Y )⊗ Z) F (X ⊗ (Y ⊗ Z))

∼=

∇X,Y ⊗1FZ 1FX⊗∇Y,Z

∇X⊗Y,Z ∇X,Y ⊗Z

∼=

(v) The following unitality diagrams commute for every X ∈ C:

ID ⊗ FX FIC ⊗ FX FX ⊗ ID FX ⊗ FIC

FX F (IC ⊗X) FX F (X ⊗ IC)

η⊗1FX

∼= ∇IC,X

1FX⊗η

∼= ∇X,IC

∼= ∼=

We say that (F, η,∇) is also symmetric, or braided if C is symmetric and the

multiplication commutes with the braiding:

FX ⊗ FY FY ⊗ FX

F (X ⊗ Y ) F (Y ⊗X)

∼=

∇X,Y ∇Y,X

∼=

Definition 3.31 ([17]). Let (F, ηF ,∇F ) and (G, ηG,∇G) be lax monoidal functors of

type (C,⊗, IC) → (D,⊗, ID). A lax monoidal natural transformation, or just a

monoidal natural transformation (when it is clear from the context), is a natural

transformation α : F =⇒ G which is compatible with the unit and multiplication.

More specifically, for all X, Y ∈ C the following diagrams commute

ID FIC FX ⊗ FY F (X ⊗ Y )

GIC GX ⊗GY G(X ⊗ Y )

ηF

ηG
αIC

∇F

αX⊗αY αX⊗Y

∇G

Definition 3.32. A monoidal monad is a monad in the bicategory of monoidal

categories, lax monoidal functors, and monoidal transformations. Moreover, if C is

a symmetric monoidal category, then a monoidal monad on C is symmetric if the

underlying monoidal monad functor F is a symmetric monoidal functor.

The importance of the above conditions is the following result.
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Proposition 3.33 ([5]). Let (P, µ, δ) be a symmetric monoidal monad on some sym-

metric monoidal category (D,⊗, I). Then Kl(P ) is a symmetric monoidal category,

with:

• the same monoidal product as the one in D;

• the tensor product of morphisms represented by f : A → PX and g : B → PY

being represented by the composite

A⊗B
f⊗g−−→ PX ⊗ PY

∇−→ P (X ⊗ Y ). (3.40)

Moreover, the inclusion D → Kl(P ) is strict symmetric monoidal.

Proof. See [5, Proposition 3.1].

The final statement about the inclusion implies that if X ∈ D has a distinguished

comonoid structure, then so does X ∈ Kl(P ).

Definition 3.34. A monad (P, µ, δ) on D is said to be affine if PI ∼= I.

Thus, if P is affine and I is terminal, then PI ∈ Kl(D) is also terminal and we

get the following result.

Corollary 3.35 ([5]). Let (P, µ, δ) be a symmetric monoidal affine monad on a

Markov category D. Then the Kleisli category Kl(P ) is again a Markov category

in a canonical way.

Proof. Follows immediately from Proposition 3.33 and the fact that PI ∼= I is ter-

minal. More specifically, the copy map for an object X ∈ Kl(P ) is given as the

composite

X
copyX−−−→ X ⊗X

δ−→ P (X ⊗X). (3.41)

It can be shown, although it is rather tedious, that the Giry monad is symmetric

monoidal affine (see e.g. [5, Lemma 4.1]). The same is true for a lot of the com-

monly encountered probability monads. This ensures us that the Kleisli categories

are Markov categories and we can use all the tools developed so far.

Now, the previous paragraphs tell the story where we start with a deterministic

category, add randomness via a probability monad, and then end up with a Markov

category via the Kleisli construction. So, what about the other direction? Suppose

we start with a Markov category C. When is it the case that there is a category
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D and a monad P on D such that C ∼= Kl(P ), i.e., such that C is “representable”?

To answer this question we will use the following result which intuitively states that

the deterministic morphisms of a representable Markov category Kl(P ) is exactly the

underlying category D.

Proposition 3.36 ([7]). Let D be a Cartesian monoidal category and (P, µ, δ) an

affine symmetric monoidal monad on D. Then the canonical functor D → Kl(P )det

is an isomorphism of categories if and only if the diagram

X PX

PX × PX P (X ×X)

δ

(δ,δ)

⌟

P (1X ,1X)

∇

(3.42)

is a pullback for every X ∈ D.

Proof. The following proof is due to Fritz et al. [7].

Assume that the diagram described above is a pullback. We only need to prove

that D → Kl(P )det is fully faithful (seeing as it is the identity on objects). To see

that it is faithful, suppose δY ◦ f = δY ◦ g for some f, g : X → Y . Now, ∇ has a left

inverse given by the canonical map

∆ : P (X ×X) → PX × PX (3.43)

which is induced from the Cartesian monoidal structure on D. Thus, ∇ is a monomor-

phism as it has a left inverse. Now, it is a known fact that monomorphisms are stable

under pullbacks and hence it follows that δ : X → PX is a monomorphism as well.

We therefore have that f = g as desired.

Next, to show that D → Kl(P )det is full, let f
# : A→ PX be the representative of

a deterministic morphism f : A→ X in Kl(P ). The determinism assumption can be

shown to equivalent (by a straightforward unfolding of definitions) to commutativity

of the diagram

A PX

PX × PX P (X ×X)

f#

(f#,f#) P (1X ,1X)

∇

(3.44)
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We can now use the pullback assumption to get a unique map f̃ : A→ X such that

A

X PX

PX × PX P (X ×X)

f̃

f#

(f#,f#)

δ

(δ,δ) P (1X ,1X)

∇

(3.45)

is commutative. However, f̃ is exactly the map we need as the commutativity implies

δ ◦ f̃ = f#.

For the other direction, suppose that D → Kl(P )det is an isomorphism of cate-

gories. Let f# : A→ PX and g : A→ PX × PX be such that

A

X PX

PX × PX P (X ×X)

f#

g

δ

(δ,δ) P (1X ,1X)

∇

(3.46)

is commutative. The commutativity of this diagram then forces g = (f#, f#). Now,

the morphisms f# : A → PX represents a morphism f : A → X in Kl(P )det. Via

the isomorphism D → Kl(P )det we then get a unique morphism f̃ : A→ X in D such

that δ ◦ f̃ = f#. We have thus found the desired morphism.

So, back to the question at hand: when does a Markov category arise as the Kleisli

category of a probability monad? To gain some intuition for this it might be helpful

to assume that such a monad exist and see what we can learn about C. What we

learn might then help us discover the correct assumptions that we need to make on

C.

Thus, assume C ∼= Kl(P ) for some probability monad P on a symmetric monoidal

category D. This implies that

C(X, Y ) ∼= Kl(P )(X, Y ) = D(X,PY ). (3.47)

Using Proposition 3.36 we then get that

D(X,PY ) ∼= Kl(P )det(X,PY ) ∼= Cdet(X,PY ). (3.48)

In particular, this means that we have natural bijections

C(X, Y ) ∼= Cdet(X,PY ). (3.49)
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For example, a Markov kernel f : X → Y can be thought of as being represented by

a deterministic map f# : X → PY .

From the standard theory of adjunctions we can then conclude that the inclusion

functor Cdet → C has a right adjoint C → Cdet which we will also denote by P . The

naturality of Equation 3.3 tells us how this P : C → Cdet acts on morphisms: a

morphism f : X → Y in C which is represented by f# : X → PY gets taken to

PX
Pf#

−−→ PPY
µ−→ PY (3.50)

where µ is the multiplication of the monad. This might seem like a circular definition,

but the P in Equation 3.50 is the original P : D → D and not the new P : C → Cdet.

The reader might complain about some abuse of notation here, but the point is that

the new P : C → Cdet is really the old P : D → D in disguise.

The bijection from Equation also gives us the unit and counit of the adjunction

Cdet ⇄ C. More specifically, we have that the unit δ : 1Cdet
=⇒ P is componentwise

the map that assigns delta distributions. On the other hand, the counit samp : P =⇒
1C is componentwise represented by the identity map 1PX : PX → PX. Using our

previous notation we therefore have that

(sampX)
# = 1PX . (3.51)

The reason for labeling the counit with the label samp is that it componentwise acts

as a sampling map. That is to say, given a state p : I → PX, composing with sampX

gives a state which is represented by the composition

I
p#−→ PPX

P (samp#X)
−−−−−→ PPX

µX−−→ PX. (3.52)

Remembering that (sampX)
# = 1PX , this is really the map

I
p#−→ PPX

µX−−→ PX. (3.53)

In other words, applying samp to a state p behaves the same as sampling that state.

Based on these observations we therefore make the following more general definition.

Definition 3.37 ([7]). Let C be a Markov category and X ∈ C an object. A distri-

bution object for X is an object PX together with a morphism sampX : PX → X

so that the induced map

sampX ◦ − : Cdet(A,PX) → C(A,X) (3.54)
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is a bijection for all A ∈ C. We denote the inverse of this map by

(−)# : C(A,X) → Cdet(A,PX) (3.55)

which also explains our use of the # symbol previously.

Using this notation we also have a more concrete description (other than just

being the unit of an adjunction) of the abstract delta distribution, namely

δX := (1X)
#. (3.56)

In other words, it is the unique deterministic morphism δX : X → PX such that

sampX ◦ δX = 1X . (3.57)

We can now properly define what it means for a Markov category to be repre-

sentable.

Definition 3.38 ([7]). Let C be a Markov category. We say that C is representable

if every object has a distribution object. The corresponding right adjoint functor

P : C → Cdet is called the distribution functor for C.

Inherent in the above definition is the claim that the distribution objects assemble

together to give a right adjoint C → Cdet. More concretely, we have the following

lemma.

Lemma 3.39 ([7]). Let C be a Markov category in which every object X ∈ C has

a distribution object PX. The assignment X 7→ PX is the object part of a functor

P : C → Cdet which is the right adjoint to the inclusion functor Cdet → C, and with

the counit of the adjunction being the natural transformation which componentwise is

the sampling map of the distribution object.

Proof. As Fritz et al. mentions [7] this is part of the standard theory on adjunc-

tions, but we include a proof nonetheless in the hopes that the reader might find it

enlightning.

We must first specify how P acts on morphisms. As is usual in category theory,

there is really only one sensible way to define it: P takes a morphism f : X → Y in

C to (f ◦ sampX)# : PX → PY in Cdet. To see that this assignment is functorial, let
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g : Y → Z be another morphism in C. We then have that

PX

Z

P (g ◦ f)

sampZ
=

PX

Z

(g ◦ f ◦ sampX)#

sampZ
=

PX

Z

sampX

f

g

=

PX

Z

(f ◦ sampX)#

sampY

g

=

PX

Z

Pf

(g ◦ sampY )#

sampZ

=

PX

Z

Pf

Pg

sampZ

(3.58)

and since sampZ is a bijection, we must have that

P (g ◦ f) = Pg ◦ Pf (3.59)

showing that P indeed is a functor. We will skip the step of showing that the δX ’s

assemble together to a natural transformation δ : 1Cdet
=⇒ P and likewise that the

sampX ’s assemble together to a natural transformation samp : P =⇒ 1C (we have

again done some abuse of notation by using the same notation P for functors which

are technically different but in reality act the same). The proof is just an unwrapping

of definitions and checking that everything work as expected.

The final step is showing that δ and samp satisfy the triangle identities which

componentwise is the requirements

sampX ◦ δX = 1X (3.60)

PsampX ◦ δPX = 1PX . (3.61)

The first equation is immediate from the definition of δX . The second equation is

also immediate after an unrolling of definitions. More explicitly, applying sampX to

the left hand side, we have

sampX ◦ PsampX ◦ δPX = sampX ◦ sampPXδPX

= sampX ,

where we used the naturality of samp. Since sampX ◦ − is a bijection we must have

that

PsampX ◦ δPX = 1PX (3.62)

as desired.
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Remark 3.40. A subtle point which might not have been clear in the proof above is

that δ is only natural when considering P on Cdet. As soon as you consider all of C,

it is no longer natural. This can, as Fritz et al. [7] mentions, initially be confusing.

For the interested reader, this problem is discussed at length in [14].

All this leads us to the following theorem which completely classifies representable

Markov categories in terms of the existence of a specific kind of monad on the deter-

ministic subcategory.

Theorem 3.41 ([7]). Let C be a Markov category. Then the following statements are

equivalent:

(i) C is representable;

(ii) there is an affine symmetric monoidal monad P on Cdet such that

• the diagram in 3.42 is a pullback for every X ∈ C;

• the identity functor on Cdet extends to an isomorphism of Markov categories

C ∼= Kl(P ).

Proof. See [7, Theorem 3.19].

Remark 3.42. The monad on Cdet is given by (P, Psamp, δ) where P is taken to

be the composition of the inclusion functor Cdet → C with the P : C → Cdet defined

earlier.

3.4 Other Notions of Representability

While representable Markov categories are nice, they do not tell the whole story.

Consider again the natural bijection

Cdet(A,PX) ∼= C(A,X). (3.63)

Is it the case that this bijection respects almost sure equality? Suppose for example

that we have two deterministic morphisms f#, g# : A → PX which are almost

surely equal with respect to a morphism p : Θ → A. In this case, the resulting

morphisms f, g : A → X are also almost surely equal with respect to Θ as f and g

are obtained by applying samp to f# and g#. The other direction is not so clear: are

the deterministic versions of two almost surely equal morphisms A → X still almost

surely equal? Fritz et al. proves in [7, Example 3.26] that this is indeed not always

the case. This motivates the following definition.

30



Definition 3.43 ([7]). Let C be a Markov category. We say that C is a.s.-compatibly

representable if it is representable and for any morphism p : Θ → A, the natural

bijection from Equation 3.63 respects almost sure equality. That is to say, for all

f, g : A→ X, we have

f# =p-a.s g
# ⇐⇒ f =p-a.s. g. (3.64)

In later proofs we shall make use of another equivalent characterization of a.s.-

compatibly representable Markov categories.

Definition 3.44 ([7]). Let C be a representable Markov category. It is said to satisfy

the sampling cancellation property if, for any three morphisms f, g : X⊗A→ Y

and h : A→ X, the following implication holds

A

X Y

h

f

=

A

X Y

h

g

=⇒

A

X Y

h

f#

=

A

X Y

h

g#

(3.65)

Remark 3.45. Remembering that f = samp ◦ f# for all morphisms in C, the condi-

tion above is named so because it amounts to cancelling the samp from f and g.

We then have the following classification of a.s.-compatibly representable Markov

categories.

Proposition 3.46 ([7]). Let C be a representable Markov category. Then C is a.s.-

compatibly representable if and only it satisfies the sampling cancellation property.

Proof. Assume that C is a.s.-compatibly representable and let f, g : X ⊗A→ Y and

h : A→ X be such that

A

X Y

h

f

=

A

X Y

h

g

(3.66)
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If in Equation 3.24 we set p to be the morphism

:=

A

h

X A

p (3.67)

then it follows that

A

X Y

h

f#

=

A

X Y

h

g#

(3.68)

as desired.

Now, suppose conversely that C satisfies the sampling cancellation property. Let

f, g : A → X be morphisms and assume f =p-a.s. g for some p : Θ → A. We need to

show that this implies f# =p-a.s. g
#. By assumption we have that

Θ

A X

=

f

Θ

p

Θ

A X

g

Θ

p (3.69)

This is an instance of the left side of the implication in Equation 3.65, substituting

with appropriate maps. By assumption we must therefore have that

Θ

A X

=

f#

Θ

p

Θ

A X

g#

Θ

p
δδ (3.70)

Marginalizing we therefore have

Θ

A X

=
f#

p

Θ

A X

g#

p
(3.71)
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which was what we wanted to show.

In traditional probability theory, we can distinguish between different probability

distributions by iterated sampling. For example, if you take samples from the two

normal distributions N (0, 1) and N (1, 1) then you will eventually start to see that

the samples cannot be taken from the same distribution. In representable Markov

categories we have the samp map that we can use to get a similar notion. More

specifically, we have a notion of iterated sampling which is defined as the morphism

PX

Xn

samp(n) :=

PX

X X

sampsamp

n times︷ ︸︸ ︷
· · ·

(3.72)

Suppose we have a states p, q : I → X in C. This is the same as having deterministic

states p#, q# : I → PX. Taking samples in ordinary probability theory should then

intuitively correspond to post-composing p# and q# with samp(n) in C. Moreover,

in traditional probability theory, if we always get the same thing from p and q no

matter how many times we sample, we would conclude that they must be the same

distribution. This corresponds to the statement that if samp(n)f = samp(n)g for all

n ∈ N then f = g. In other words, the morphisms {samp(n)}n∈N are jointly monic.

Definition 3.47. Let C be a representable Markov category. We say that C is ob-

servationally representable if the morphisms {samp(n)}n∈N are jointly monic, i.e.,

for all n ∈ N, and all morphisms f, g : A→ PX we have that if samp(n)f = samp(n)g,

then f = g.

It turns out that being observationally representable is equivalent with being “a.s.-

compatibly observationally representable”.

Proposition 3.48 ([6]). Let C be a representable Markov category. The following are

equivalent

(i) the morphisms {samp(n)}n∈N are jointly monic;

(ii) the morphisms {samp(n)} are jointly monic modulo a.s. equality, i.e., for all

p : A→ X, and f, g : X → PY , we have

samp(n)f =p-a.s. samp
(n)g ∀n ∈ N =⇒ f =p-a.s. g. (3.73)
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Proof. See [6, Proposition A.4.2].

We can now place observationally representable into the hierarchy of the different

notions of representability.

Proposition 3.49 ([6]). Every observationally representable Markov category is also

a.s.-compatibly representable.

Proof. Let f, g : A→ X be such that f =p-a.s. g. Then, as f
# and g# are deterministic

we have

PX

X X

sampsamp · · ·

f#

PX

X X

ff · · ·

=

PX

X X

gg · · ·

=p-a.s.

PX

X X

sampsamp · · ·

g#
=

(3.74)

where the middle p-a.s. equality follows from [5, Lemma 13.5]. Observationally

representability then implies that f# =p-a.s. g
#.

34



Chapter 4

Partial Evaluations

We now turn our attention to partial evaluation and see how they fit into the frame-

work of Markov categories. In fact, we will see that partial evaluations correspond

exactly to the second-order dominance relation on Markov categories.

Now, the starting point for partial evaluations is the observation that while a

formal expression like 1 + 2 + 3 can be totally evaluated to 6 it can also be partially

evaluated to 3 + 3 or 1 + 5. Keeping in mind this remark from Hyland et. al. [12],

a monad is like a consistent choice of spaces of formal expression in a signature, it

makes sense to formalize partial evaluations in the theory of monads.

4.1 General Theory

We want to be able to relate partial evaluations to the dominance relation on C(Θ, X)

for all Θ, X ∈ C. With this in mind we will give a very general treatment of partial

evaluations, but the reader should keep in mind that intuition is best gotten when

thinking about the case Θ = I.

Definition 4.1. Let C be a category and X ∈ C. An S-shaped generalized element

of X is a morphism p : S → X for some S ∈ C. By abuse of notation we will also

write p ∈ X when p is a generalized element.

Example 4.2. Putting C = Set and S = {∗} recovers the usual notion of elements

in a set.

Definition 4.3. Let (T, µ, η) be a monad on some category C, and A ∈ C. An S-

shaped generalized formal expression on A is an S-shaped generalized element

p ∈ TA for some S ∈ C.
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A partial evaluation of 1 + 2 + 3 only makes sense when we also have a notion

of “total evaluation”. The way to formalize total evaluations of formal expressions is

through T -algebras for some monad T .

Definition 4.4. Let C be a category and (T, µ, η) a monad on it. A T -algebra is a

pair (A, e) where A ∈ C and e : TA→ A such that the following diagrams commute

TTA TA A TA

TA A A.

Te

µ e

ηA

1A
e

e

A morphism of T -algebras (A, e) → (B, d) is a morphism f : A → B in C such that

the diagram

TA TB

A B

Tf

e

f

d

is commutative. The category whose objects are T -algebras and morphisms are mor-

phisms of T -algebras is denoted by CT and is referred to as an Eilenberg-Moore

category.

Many of the usual constructions in algebra can be formalized this way. For ex-

ample, Abelian groups are the same thing as N-algebras where N is the commutative

monoid monad. Similarly, groups, rings, modules, etc. can all be instantiated as

algebras of monads.

Now, if we have an algebra, then it makes sense to talk about the result of a total

evaluation.

Definition 4.5 ([8]). Let (A, e) be a T -algebra. Given a generalized formal expression

p ∈ TA, the result of p is the generalized element e ◦ p ∈ A.

Having defined the necessary terminology we can now give proper meaning to

partial evaluations.

Definition 4.6. Let p, q ∈ TA be S-shaped generalized formal expressions on a T -

algebra (A, e). A partial evaluation from p into q is an S-shaped generalized ele-

ment k ∈ TTA such that the following diagram commutes

S

TA TTA TA.

p
k

q

µ Te
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Thus, partial evaluation is a relation on C(S, TA) and we can ask ourselves about

what properties this relation has: is it reflexive, transitive, something else?

For example, suppose that we have a partial evaluation from p to q and from

q to r, does this imply that there exist a partial evaluation from p to r? In other

words, can we compose partial evaluations? To answer this we need to introduce

some terminology.

Definition 4.7. We say that a commutative diagram

A B

C D

f

g m

n

is a weak pullback if, given p : S → C and q : S → B such that n ◦ p = m ◦ q then

there exists r : S → A such that

S

A B

C D

r

q

p

f

g m

n

is commutative.

Remark 4.8. This is almost the same as a pullback except that we have dropped the

uniqueness condition.

Definition 4.9. Let (T, µ, η) be a monad on some category C. We say that µ is

weakly Cartesian if the diagram

TTX TTY

TX TY

TTf

µX µY

Tf

is a weak pullback for all X, Y ∈ C and f : X → Y .

Definition 4.10 ([4]). Let (T, µ, η) be a monad on some category C. We say that

T is Beck-Chevalley (BC for short) if µ is weakly Cartesian and T preserves weak

pullback.
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Proposition 4.11 ([8]). Let (T, µ, η) be a monad on a category C, S ∈ C, and

A ∈ CT . Then C(S, TA) equipped with the partial evaluation relation → has the

following properties

• Reflexivity: for each s ∈ C(S, TA), s→ s;

• Confluence: for all s, t, u ∈ C(S, TA) such that

s

t u

there exists z ∈ C(S, TA) such that

s

t u

z.

More specifically, z can be obtained by η ◦ e ◦ t = η ◦ e ◦ u.

• If T is BC then → is transitive.

Proof. See [8, Proposition 4.1]

We now introduce a couple of examples of monads on Set and look at the partial

evaluations that are induced by them.

Example 4.12 ([8]). Let G be a monoid in Set and consider the (G×−, µ, η) monad

defined as follows:

• Given X ∈ Set, G×X is the Cartesian product of G and X.

• Given f : X → Y , G× f : G×X → G× Y is defined by

G× f = 1G × f. (4.1)

• The multiplication is defined by

µX(g, h, x) = (gh, x) (4.2)

for X ∈ Set and (g, h, x) ∈ G×G×X.
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• The unit is defined by

ηX(x) = (1, x) (4.3)

where 1 is the unit of the monoid.

A G×−-algebra is then the same thing as a set X together with a G action G×X → X.

Now, let (g, x) and (h, y) be elements of G×X. Then (h, y) is a partial evaluation

of (g, x) if there is an element (h, ℓ, x) such that hℓ = g and ℓx = y. Loosely speaking

this means that (h, y) is further along in the orbit compared to (g, x). One can show

that this monad is BC and hence the partial evaluation order is transitive. Loosely

speaking this is the trivial statement that if (k, z) is further along in the orbit than

(ℓ, y) and (ℓ, y) is further along than (g, x) then (k, z) is further along than (g, x) too.

Example 4.13. Consider the list monad (List, join, ret) defined as follows

• Given S ∈ Set, List(S) =
∐

n∈N S
×n. Thus, a list is a sequence (a1, . . . , an)

for some n ≥ 0 and a1, . . . , an ∈ S and where the empty list () corresponds to

n = 0.

• Given f : X → Y , List f : ListX → ListY is the pushforward of lists, i.e.,

List f =
∐
n∈N

f×n (4.4)

so that

List f((a1, . . . , an)) = (f(a1), . . . , f(an)). (4.5)

• The multiplication reduces lists of lists to lists by concatenation

joinS


(a11, . . . , a1n1),

...
(ak1, . . . , aknk

),


 = (a11, . . . , a1n1 , . . . , ak1, . . . , aknk

). (4.6)

• The unit sends an element s ∈ S to the list containing that element, i.e.,

retS(s) = (s). (4.7)

A List-algebra is then a map e : ListS → S which is the same thing as specifying a

monoid structure on S (the List-algebra axioms gives the necessary monoid axioms).

Thus, a partial evaluation from a list (a1, . . . , an) to a list (b1, . . . , bm) corresponds to

a list of lists (c11, . . . , c1n1),
...

(ck1, . . . , cknk
),


39



such that

(a1, . . . , an) = (c11, . . . , c1n1 , . . . , ck1, . . . , cknk
) (4.8)

and

(b1, . . . , bm) = (c11 . . . c1n1 , . . . , ck1 . . . cknk
). (4.9)

In other words, it corresponds to partitioning (a1, . . . , an) into sublists, evaluating

these sublists, and then putting the result back together. From this intuitive description

it should also be clear that partial evaluation is transitive for List. We leave the details

of this to the interested reader.

4.2 Partial Evaluations in Representable Markov

Categories

Every representable Markov category C gives rise to an affine symmetric monoidal

monad on Cdet through Theorem 3.41. It is therefore a valid question to ask what

the partial evaluation relation of this monad looks like. Thus, suppose we have a

P -algebra e : PA→ A in Cdet. Using that

Cdet(Θ, PA) ∼= C(Θ, A) (4.10)

we see that the partial evaluation relation correspond to a certain relation on C(Θ, A).

More specifically, if p, q : Θ → A in C then p ≤ q in the relation on C(Θ, A) means

that there exists k : Θ → PA such that the diagram

Θ

A PA A

p
k

q

esampA

(4.11)

is commutative in C. We have the following result.

Proposition 4.14. The isomorphism

Cdet(Θ, PA) ∼= C(Θ, A) (4.12)

is monotone in both directions where the order on Cdet(Θ, PA) is given by the partial

evaluation order and the order on C(Θ, A) is the one described above.
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Proof. We must show that samp◦− and (−)# are order preserving. Thus, let p#, q# ∈
PA and assume p# can be partially evaluated to q#. We want to show that this implies

that p ≤ q, i.e., that there exists k ∈ PA such that

Θ

A PA A

p
k

q

esampA

(4.13)

is commutative. By assumption there must exist a k# ∈ PPA such that

Θ

PA PPA PA

p#

k#
q#

PePsampA

(4.14)

is commutative. We let this be our candidate k and have that

k

sampA

A

Θ
k#

sampA

A

Θ

= sampPA =
p#

A

Θ

sampA

k#

sampA

A

Θ

= sampPA = p

A

Θ

(4.15)

as desired. We also have

k#

e

A

Θ

sampPA ==
e

A

k

Θ

=

PA

q

Θ
k#

sampA

A

Θ

Pe

sampA

A

q#

Θ

= (4.16)

as desired. Thus the diagram in (4.13) is commutative.

Conversely, suppose that p ≤ q. Let k# be the deterministic counterpart to the k

in
Θ

A PA A

p
k

q

esampA

(4.17)

which makes everything commute. Now, remember that sampA ◦ − : Cdet(Θ, PA) →
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C(Θ, A) is a bijection. Thus, from

sampA

A

k#

Θ

=PsampA

sampA

A

k#

Θ

sampPA

sampA

A

k

Θ

= p

Θ

=

A
sampA

A

p#

Θ

= (4.18)

it follows that PsampA ◦ k# = p# as desired. Similarly

sampA

A

k#

Θ

Pe =

e

A

k#

Θ

sampPA

e

A

k

Θ

=

A

q

Θ

=
sampA

A

q#

Θ

= (4.19)

which implies Pe ◦ k# = q# as desired.

Definition 4.15. The relation on C(Θ, X) described above is called the second-

order dominance relation.

Remark 4.16. Putting Θ = I in BorelStoch restores the usual notion of stochastic

dominance. For the details of this we refer the reader to [7] and also [17, Chapter 4].

Now, the second-order dominance relation is closely related to the concept of

dilations.

Definition 4.17 ([7]). Let C be a representable Markov category, e : PA → A an

algebra of the monad (P, Psamp, δ) on Cdet, and f : Θ → A a morphism in C. We

say that a morphism t : A⊗ Θ → A is an f -dilation (with respect to the P -algebra

e) if the following equality holds for t

Θ

A A

f

t#

e

=
f

Θ

A A

(4.20)
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When showing the relationship between second-order stochastic dominance and

dilations it is helpful to assume that the category is not only representable, but also

a.s.-compatibly representable.

Lemma 4.18 ([7]). Let C be an a.s.-compatibly representable Markov category. Con-

sider the free algebra PsampX : PPA→ PA of the monad (P, Psamp, δ) on Cdet and

a morphism f : Θ → PA. Then, a morphism t : A⊗Θ → PA is an f -dilation if and

only if the following equality holds

Θ

PA A

f

t

sampA

=

f

Θ

PA A

sampA

(4.21)

Proof. Assume t is an f -dilation. We then have that

Θ

PA PA

f

t#

PsampA

=
f

Θ

PA PA

(4.22)

Then, using the sampling cancellation property (we can do this as PsampA is deter-

ministic) we have that the above equation holds if and only if

Θ

PA A

f

t#

PsampA

=

f

Θ

PA A

sampA

sampA

(4.23)
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and since PsampA ◦ sampPA = sampA ◦ sampPA this holds if and only if

Θ

PA A

f

t

sampA

=

f

Θ

PA A

sampA

(4.24)

as desired.

Proposition 4.19. [7] Let C be an a.s.-compatibly representable Markov category

which has conditionals. Given any P -algebra e : PA→ A in Cdet and any morphisms

p, q : Θ → A in C, the following conditions are equivalent

(i) The inequality p ≤ q holds in C(Θ, A), i.e., there exists a morphism k : Θ → PA

such that
Θ

A PA A

p
k

q

esampA

(4.25)

commutes.

(ii) There exist a q-dilation t : A ⊗ Θ → A which converts q to p. That is to say,

the following equality holds

A

Θ

p

A

Θ

q

t

= (4.26)

Proof. This is an adaptation of a proof from [7].

(i) =⇒ (ii): Let k ∈ PA be such that

Θ

A PA A

p
k

q

esampA

(4.27)

44



commutes. Let t = sampA ◦ e† where e† is the Bayesian inverse of e in

Θ

A PA

k

e

(4.28)

Then, the defining equation of the Bayesian inverse gives

Θ

PAA

q

e†

=

Θ

A PA

k

e

(4.29)

from which it follows that

Θ

PAA

q

t

=

Θ

A A

k

e sampA

(4.30)

Marginalization then gives

A

Θ

p

A

Θ

q

t

= (4.31)

showing Equation 4.26. Now, to see that t is a q-dilation, note that Equation 4.29
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gives

Θ

AA

q

e†

=

Θ

AA

k

ee

e

=

Θ

AA

q

(4.32)

where we used the assumption that e is deterministic. Then, applying the sampling

cancellation property gives

Θ

PAA

q

(e†)#

Pe

=

Θ

PAA

q

δA

(4.33)

Keeping in mind that t# = PsampA ◦ (e†)# we have

Θ

PAA

q

(e†)#

Pe

=

Θ

PAA

q

δA

(4.34)

Applying 1A ⊗ e to both sides and keeping in mind that e is a P -algebra then gives

Θ

AA

q

t#

=

Θ

AA

q

e

(4.35)
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showing that t is a q-dilation.

(ii) =⇒ (i): Let t : A ⊗ Θ → A be a q-dilation such that Equation 4.26 holds.

Define k ∈ PA by

PA

Θ

k

PA

Θ

q

t#

:= (4.36)

Applying sampA then gives

A

Θ

k

A

Θ

q

t

=

sampA
=

A

Θ

p (4.37)

where the second equalities follow from the fact that t converts q to p. On the other

hand, applying e to Equation 4.36 gives e ◦ k = q by the assumption that t is a

q-dilation with respect to e. Thus

Θ

A PA A

p
k

q

esampA

(4.38)

commutes as desired.

Summarizing we have the following three-way equivalence between partial evalu-

ations, second-order stochastic dominance and dilations.

Corollary 4.20. Let C be an a.s.-compatibly representable Markov category with con-

ditionals. Given p, q ∈ C(Θ, A), the following are equivalent:

(i) p ≤ q in the pre-order on C(Θ, A);

(ii) there exists a partial evaluation from p# to q#;

(iii) there exists a q-dilation t : A⊗Θ → A which converts q to p.
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Chapter 5

Relationship Between Conditionals
and BC Monads

In this final chapter we relate the existence of conditionals with the BC property

(introduced in Definition 4.10) on monads. More specifically, we show how the un-

derlying monad of an a.s.-compatibly representable Markov category C that has con-

ditionals, and satisfies something known as the equalizer principle, is BC. This lets

us conclude that the second-order stochastic dominance relation is transitive in such

Markov categories and gives us a functor

C(Θ,−) : CP
det → Ord (5.1)

for all Θ ∈ C.

5.1 Conditionals Implies BC

Before stating the main theorem we need some technical lemmas and terminology.

Definition 5.1 ([6]). A Markov category C is said to satisfy the equalizer principle

if:

(i) Equalizers in Cdet exist.

(ii) For every equalizer diagram

E X Y
eq f

g
(5.2)

in Cdet, every p : A→ X in C satisfying f =p g factors uniquely across eq.

Lemma 5.2 ([6]). BorelStoch satisfies the equalizer principle.
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Proof. See [6, Proposition 3.5.4].

Lemma 5.3. Let C be a category with pullbacks. Suppose f : X → Z and g : Y → Z

are two morphisms in C. With

X ×Z Y Y

X Z

g∗f

f∗g
⌟

g

f

being the corresponding pullback diagram we have that the following diagram is an

equalizer diagram

X ×Z Y X × Y Z.
(f∗g,g∗f) f◦π1

g◦π2

where π1 and π2 are the projection maps X × Y → X and X × Y → Y respectively.

Proof. Let (p, q) : A→ X × Y be a map such that

f ◦ p = g ◦ q. (5.3)

Using the universal property of the pullback we then have a unique map r : A →
X ×Z Y such that

f ∗g ◦ r = p (5.4)

and

g∗f ◦ r = q. (5.5)

However, this means that the following diagram is commutative

X ×Z Y X × Y Z

A.

(f∗g,g∗f) f◦π1

g◦π2

r
(p,q)

Moreover, having another map r′ : A→ X ×Z Y such that

X ×Z Y X × Y Z

A.

(f∗g,g∗f) f◦π1

g◦π2

r′
(p,q)

is commutative, we must have that r′ = r by the uniqueness property of the pullback.

Thus, we have shown that X ×Z Y is the equalizer of f ◦ π1 : X × Y → Z and

g ◦ π2 : X × Y → Z.
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Lemma 5.4. Let C be a category with pullbacks and (P, µ, δ) a monad on C. If P

turns pullbacks into weak pullbacks then P preserves weak pullbacks.

Proof. Consider a weak pullback diagram

W Y

X Z

g∗f

f∗g g

f

(5.6)

in C. We want to show that

PW PY

PX PZ

P (g∗f)

Pf(∗g) Pg

Pf

(5.7)

is a weak pullback. Thus, suppose we have maps p : A→ PX and q : A→ PY such

that
A

PW PY

PX PZ

q

p

P (g∗f)

P (f∗g) Pg

Pf

(5.8)

commutes. By assumption we have that

P (X ×Z Y ) PY

PX PZ

Pπ2

Pπ1 Pg

Pf

(5.9)

is a weak pullback. Thus there exists r̃ : A→ P (X ×Z Y ) such that

A

P (X ×Z Y ) PY

PX PZ

r̃

q

p

Pπ2

Pπ1 Pg

Pf

(5.10)
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commutes. Now, there is also a canonical map s : X ×Z Y → W such that

A

P (X ×Z Y )

PW PY

PX PZ

r̃ q

p

Ps

Pπ2

Pπ1

f∗g

g∗f Pg

Pf

(5.11)

commutes. Defining r := Ps ◦ r̃ then gives the desired map making

A

PW PY

PX PZ

r

q

p

f∗g

g∗f Pg

Pf

(5.12)

commute.

Lemma 5.5. Let C be a representable Markov category. If C has conditionals then µ

of the underlying monad (P, µ, δ) on Cdet is weakly Cartesian.

Proof. Let f : X → Y , p# : A → PX, and q# : A → PPY be morphisms in Cdet

such that the following diagram is commutative.

A

PPX PPY

PX PY.

q#

p#

PPf

µ µ

Pf

We need to find a map r# : A→ PPX in Cdet such that

A

PPX PPY

PX PY

r#

q#

p#

PPf

µ µ

Pf
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is commutative. Consider therefore the following morphism in C

A

PX

r :=

A

P (f †)

q

PX

σA,Y

(5.13)

where f † is the Bayesian inverse of f with respect to p and σA,Y : A⊗PY → P (A⊗Y )

is the left strength of P . Now, applying sampX to the left hand side of Equation 5.13

we have that

A

X

r
=

sampX

A

X

r#

sampX

sampPX =

A

X

r#

sampX

PsampX (5.14)

Similarly, applying sampX to the right hand side gives

A

P (f †)

q

X

σA,Y

sampX

=

A

sampY

q

X

σA,Y

f †

=

A

q

X

sampA

=

f †

A

q#

X

sampA

f †

PsampA
=

A

p#

X

sampA

f †

Pf =

A

p

X

f

f †

(5.15)
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Combining this with Lemma gives

=

A

p

X

f

f †

A

X

r#

sampX

PsampX

A

X

p= (5.16)

Applying the sampling cancellation property then gives that p# = Psamp◦ r# which

shows commutativity of the left triangle (remember that µ = Psamp).

For commutativity of the right triangle, the sampling cancellation property implies

that it is sufficient to show that

=

Pf

Pf †

σA,Y

q

PY

A

A

PY

q (5.17)

Now, by a second usage of the sampling cancellation property (and marginalization)

it suffices to show that.

=

Pf

Pf †

q

Y

A

A

Y

q
σA,Y

sampY

sampY

. (5.18)
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The right hand side is equal to

f

Y

A

p

Pf

Pf †

q

Y

A

σA,Y

sampY

=

f

q

Y

A

sampY

f †

=

f

q#

Y

A

sampY

f †

PsampY

=

f

p#

Y

A

sampY

f †

Pf

=

f

p

Y

A

f

f †

=

(5.19)

while the left hand side gives

sampY

Y

A

q
=

sampY

Y

A

q#

PsampY =

sampY

Y

A

p#

Pf
f

Y

A

p
= (5.20)

showing that Equation 5.17 holds and hence µ is weakly Cartesian.

Theorem 5.6. Let C be an a.s-compatibly representable Markov category with pull-

backs. If C satisfies the equalizer principle and has conditionals, then the underlying

monad (P, µ, δ) on Cdet is BC.

Proof. Using Lemma 5.5 we know that µ is weakly Cartesian. Hence all that remains

to show is that P preserves weak pullbacks.

By Lemma 5.4 it suffices to show that P turns pullbacks into weak pullbacks.

Thus, suppose we have a pullback

X ×Z Y Y

X Z.

g∗f

f∗g g

f

54



in Cdet. We want to show that

P (X ×Z Y ) PY

PX PZ.

P (g∗f)

P (f∗g) Pg

Pf

is a weak pullback in Cdet. Suppose therefore that we have maps p# : A → PX and

q# : A→ PY such that the following diagram is commutative

A

P (X ×Z Y ) PY

PX PZ.

q#

p#

P (g∗f)

P (f∗g) Pg

Pf

Now, define ρ : A→ X × Y by

:=ρ

A

X Y

f † g†

s

(5.21)

where s is the common composition f ◦ p = g ◦ q in C. The equalizer principle and

Lemma 5.3 tells us that if

=

A

f

Z X Y

ρ

A

Z X Y

ρ

g

(5.22)

then there exists a map r : A→ X ×Z Y in C such that

ρ = (f ∗g, g∗f) ◦ r (5.23)
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in C, which is exactly what we need. Expanding ρ in Equation 5.22 we get the

requirement

=

f

Z X Y

A

f † g†

s

Z X Y

A

f † g†

s

g

. (5.24)

Now, using relative positivity of C and the fact that f ◦ f † and g ◦ g† are s-a.s.

deterministic, we have that

=

f

Z X Y

A

f † g†

s

Z X Y

A

f †

g†

s

. (5.25)

Similarly,

=

Z X Y

A

f † g†

s

g

Z X Y

A

f †

g†

s

. (5.26)
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Using the associativity of the copy map, the right hand side in Equation 5.25 becomes

Z X Y

A

f † g†

s

. (5.27)

Doing the same for the right hand side in Equation 5.26 also gives the exact same

result and hence we can conclude that the equality in Equation 5.22 indeed holds.

Thus, using the equalizer principle there must exist a map r : A→ X ×Z Y in C such

that

ρ = (f ∗g, g∗f) ◦ r (5.28)

in C. The map r̂# : A→ P (X×Z Y ) in Cdet is therefore the desired map which makes

A

P (X ×Z Y ) PY

PX PZ

r#

q#

p#

P (g∗f)

P (f∗g) Pg

Pf

into a commutative diagram.

As far as we know the following result is new.

Corollary 5.7. The Giry monad on BorelStoch is BC.

Proof. Follows immediately from Lemma 5.2 and Theorem 5.6.

Remark 5.8. There exists at least one paper [19] which claims the opposite of the

above corollary. However, in [19] the author confuses equalizers for pullbacks and

wrongly states that the pullback is empty.

In light of Proposition 4.11 we also have the following property on the second-order

stochastic dominance relation.

Corollary 5.9. Let C be an a.s.-compatibly representable Markov category which has

conditionals and satisfies the equalizer principle. Then the second-order dominance

relation on C(Θ, X) is transitive for all Θ ∈ C and X ∈ CP
det.
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Proof. Follows immediately by Proposition 4.11, 4.20, and Theorem 5.6.

In particular, this means that C(Θ, X) is a pre-order and that the assignment

C(Θ,−) : CP
det → Ord

(A, e) 7→ C(Θ, A)

f : (A, e) → (B, d) 7→ f ◦ − : C(Θ, A) → C(Θ, B)

is a functor. The only non-trivial thing to show is that f ◦ − is monotone. However,

this is a straight forward proof and we leave the details to the interested reader.

As far as we know this functor has not been studied in great detail and we do not

know what properties it possesses. A particular problem which should have a definite

yes or no answer is the following.

Problem 5.10. Is the functor C(Θ,−) : CP
det → Ord a Grothendieck bifibration?
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