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1. Introduction

In recent years, topological data analysis (TDA) has unveiled insights into the structure
and dynamics of complex datasets. At the heart of TDA lies persistent homology, a tool that
discerns topological features of data across multiple scales. However, the computational
complexity of persistent homology poses significant challenges, especially when dealing
with large datasets. The main goal of this essay is to study how discrete Morse theory can
be used to speed up the computation of persistent homology of sequences of cosheaves on a
finite simplicial complex. In order to do this we will build up the theory of Čech homology
from the ground up and provide introductory exposition for all necessary concepts. Some
care has been taken in trying to balance the line between focusing on the concrete case of
simplicial complexes and the more general setting of a topological space.

Notation: We use ⊂ to denote non-strict inclusion, lim−→ to denote colimit of a diagram,
and lim←− to denote the limit of a diagram.

2. Cosheaves

In this section we formally define simplicial complexes and cosheaves. We define
cosheaves in a more general setting than just for simplicial complexes as we believe this
offers a more unifying perspective. Some basic familiarity with category theory is assumed.
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2.1. Simplicial complexes.

Definition 2.1 (Abstract simplicial complex). An abstract simplicial complex (ASC) is
a subset K ⊂ P(N) of the power set of some N ∈ Set that is closed under taking subsets. We say
that K is finite whenever N is a finite set.

In the rest of this article we shall always assume that N is finite and just refer to K as an
ASC.

Now, for any poset, such as K, there is a standard topology we can put on it.

Definition 2.2 (Alexandrov topology, [GS23]). Let (P,⩽) be a poset. The Alexandrov
topology on (P,⩽) is defined as follows: U ⊂ P is open if and only if for all u ∈ U, Pu⩽ := {p ∈
P | u ⩽ p} ⊂ U.

It is quite straightforward to verify that the collection B := {Pu⩽}u∈P forms a basis for
the topology on (P,⩽) .

For P = K we will use the notation Ka to refer to K as a topological space with the
Alexandrov topology. We also use st(σ) to denote Kσ⩽ and refer to it as the star of the
simplex σ. Lastly, we use the notation StK to refer to the basis B of Ka.

A concept which shall be useful for us later is the nerve of an open cover.

Definition 2.3 (Nerve of open cover). Let X be a topological space and U = {Ui}i∈Λ an open
cover of X indexed by an ordered set Λ. The nerve of U is defined to be the ASC

N(U) := {I ⊂ Λ | UI ̸= ∅ and |I| <∞} (1)

where UI :=
⋂
i∈IUi.

2.2. Cosheaves. We now turn our attention to studying cosheaves on (Open(Ka),⊂),
where (Open(X),⊂) is the poset of open subsets on some topological space X.

Definition 2.4 (Copresheaf). Given categories C and D, a copresheaf on C is a functor
F : C → D. A morphism of copresheaves F,G : C → D is a natural transformation ϕ : F → G.
Given two morphism of copresheaves ϕ : F → G and ψ : G → H, the composition ψ ◦ϕ : F → H

is simply the componentwise composition of ψ and ϕ. We denote the category of copresheaves on C

with values in D as CoPshD(C).

Definition 2.5 (Properties of morphism of copresheaves). Let ϕ : F → G be a morphism
of precosheaves. We say that

(1) ϕ is a monomorphism, if whenever ψ,ψ ′ : H→ F such that ϕ ◦ψ = ϕ ◦ψ ′ then ψ = ψ ′;1

(2) ϕ is an epimorphism, if whenever η,η ′ : G→ H such that η ◦ϕ = η ′ ◦ϕ then η = η ′;
(3) ϕ is an isomorphism, if there exist φ : G→ F such that φ ◦ϕ = 1F and ϕ ◦φ = 1G.

Remark 2.6. When D = Veck then ϕ is a monomorphism/epimorphism if and only if each
component of ϕ is injective or surjective respectively.

Moreover, as vertical composition of natural transformations is defined componentwise, we have
that if ϕ : F → G is an isomorphism, then ϕx must be an isomorphism for all x ∈ C. We thus have
that the inverse of ϕ is ϕ−1 where (ϕ−1)x = (ϕx)

−1.

Before giving the definition of a cosheaf we need to say something about different types
of open covers.

1By ◦ we mean vertical composition of natural transformations.
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Definition 2.7 ([Cur19]). Let U ⊂ X be an open set of some topological space X and let
U = {Ui}i∈Λ ⊂ Open(X) be a collection of open sets indexed over an ordered indexing set Λ.

(1) We say that U is an open cover of U if
⋃
i∈ΛUi = U.

(2) We say that U is a Čech cover of U if U is an open cover of U with the additional property
that whenever a finite collection {Ui}i∈I ⊂ U has nonempty intersection UI then UI ∈ U.

Example 2.8. The open cover StK is a Čech cover. This is because for two σ, τ ∈ K we either
have σ∩ τ ̸∈ K in which case st(σ)∩ st(τ) = ∅, or σ∩ τ ∈ K in which case we have st(σ)∩ st(τ) =
st(σ∪ τ).

Note that for an open cover U of X we have that the inclusion of the open cover ιU : U→
Open(X) can be regarded as a functor ιU : (U,⊂)→ (Open(X),⊂) of posets.

Definition 2.9 (Cosheaf, [Cur19]). Let X be a topological space and let D be a cocomplete
category. A D-valued copresheaf on F : Open(X)→ D is a cosheaf for U if U is a Čech cover and
the canonical map

F[U] := lim−→F ◦ ιU → F(lim−→ ιU) = F(U) (2)

is an isomorphism. Moreover, we say that F is a cosheaf if for every Čech cover U, the functor
F is a cosheaf for U. We denote the full subcategory of D-valued cosheaves on X as CoShD(X) ⊂
CoPshD(X). When D is clear from the context, we shall usually drop it and just write CoSh(X).

Remark 2.10. The definition of a cosheaf above requires that D be cocomplete. If D is the
category of finite dimensional vector spaces, then this is not the case.2 Hence, when we speak of
finite dimensional vector space valued cosheaves we shall think of these vector spaces as lying inside
the bigger category of vector spaces.

Definition 2.11 (Subcosheaf). Let F,H ∈ CoSh(X). We say that H is a subcosheaf of F if
there exists a monomorphism H→ F.

It will often be easier for us to specify a cosheaf on the basis of a topological space rather
than all open sets. We therefore require the following lemma:

Proposition 2.12 ([GS23],[Cur19]). Let X be a topological space with basis B and consider
B as a poset category. A functor F̂ : B → D for some cocomplete category D has a unique (up
to isomorphism) extension to a cosheaf F : Open(X) → D. That is, we have the following Kan
extension diagram

B D

Open(X).

F̂

∃!F
ιB

Proof. This is a combination of [GS23, Lemma 2.1.13] and [Cur19, Theorem 4.8]. There
is some translation between the cited results to be done to get the full statement in our
proposition. As this would require a significant detour into category theory we shall not
go into the details of this here. □

Corollary 2.13. Every functor F̂ : StK → Veck determines a unique cosheaf F : Ka → Veck
which we call the cosheafification of F̂.
2As an example, the direct sum of an N-indexed collection of finite dimensional vector spaces is not finite
dimensional.
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Thus, as we are only interested in working with ASC, we never have to worry about
checking the isomorphism condition in the cosheaf definition.

Example 2.14 (Constant cosheaf). Let B be a basis for X and V ∈ Veck a vector space over k.
Consider the functor F : B → Veck where F(U) = V and F(U ⊂ U ′ = 1V . The cosheafification of
F defines a cosheaf VX : Open(X)→ Veck called a constant cosheaf on X.

Remark 2.15. When X = Ka, a constant cosheaf VK is a cosheaf such that VK(st(σ)) = V for
all σ ∈ K and VK(st(σ) ⊂ st(τ)) = 1V for all τ ⊂ σ.

A word about notation: we shall drop the subscript K when talking about a constant
cosheaf on K as it is understood from the context.

Example 2.16 (Pushforward). Let f : X→ Y be a morphism of topological spaces and suppose
F is a cosheaf on X. The pushforward of F is the cosheaf f∗F on Y where for V ⊂ Y an open set we
let

f∗F(V) = lim−→
f(U)⊂V

F(U). (3)

Since this is a functorial construction we get a functor f∗ : CoSh(X) → CoSh(Y) called the
pushforward functor.

Example 2.17 (Skyscraper cosheaf). Let x ∈ X and V ∈ Veck. The skyscraper cosheaf on
X at x with value in V , denoted xV∗ is defined to be the pushforward of the constant cosheaf V {x} on
{x}, i.e., for U ⊂ X open we have

xV∗ (U) =

{
V , if x ∈ U
0, else.

(4)

Moreover, for U ⊂ U ′, we have {
1V , if x ∈ U
0, else.

(5)

Remark 2.18. In the case where X = K and σ ∈ K we get that the skyscraper cosheaf σV∗ has
the following description: for τ ∈ K we have

σV∗ (st(τ)) =

{
V , if σ ⊃ τ
0, else,

(6)

and for τ ′ ⊂ τ, we have

σV∗ (st(τ) ⊂ st(τ ′)) =

{
1V , if σ ⊃ τ
0, else.

(7)

Definition 2.19 (Costalk of cosheaf). Let F : Open(X)→ D be a cosheaf and suppose x ∈ X.
The costalk of F at x is defined to be

Fx := lim←−
U∋x

F(U). (8)

Example 2.20. If X = Ka and F : Open(Ka)→ Veck is a cosheaf, then

Fσ = F(st(σ)) (9)

for all σ ∈ Ka. This follows because st(σ) is the smallest neighborhood of σ in Ka. An interesting
consequence of this is that, in lieu of Corollary 2.13, the cosheaf F is determined by its costalks which
is not the case for a general cosheaf.
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2.3. Čech homology. Given a Čech open cover U, of some topological space X, and
an Veck-valued cosheaf F : Open(X) → Veck for some field k, on U. Then there is a
combinatorial homology theory3 on X called Čech homology.

Definition 2.21 (Čech complex). Let X be a topological space and U = {Ui}i∈Λ a Čech open
cover of X with some ordered indexing set Λ. Suppose F : Open(X) → Veck is a Veck-valued
cosheaf on U for some field k. The Čech complex of X is the chain complex (Č•(U;F),∂•) where

Čn(U;F) :=
⊕

|I|=n+1

F(UI), for I ∈ N(U), (10)

and ∂n : Čn(U;F)→ Čn−1(U;F) is given on basis elements sI ∈ F(UI) by

∂n(sI) :=

n∑
k=0

(−1)kr
U
(k)
I ,UI

(sI) (11)

where UI := Ui0 ∩ · · · ∩ Ûik ∩ · · · ∩Uin , with the hat denoting an absent element, and r
U
(k)
I ,UI

is

the image of the inclusion map UI ⊂ U
(k)
I under F.

For Čech homology to make sense we need to actually check that (Č•(U;F),∂•) is a
chain complex, i.e., that ∂• squares to zero.

Proposition 2.22. For all n > 0, ∂n−1 ◦ ∂n = 0.

Proof, [Cur14]. From the functoriality of F we have a commutative diagram

F
(
U

(j,k)
I

)

F
(
U

(j)
I

)
F
(
U

(k)
I

)

F(UI).
r
U
(j)
I

,UI

r
U
(j,k)
I

,U(j)
I

r
U
(k)
I

,UI

r
U
(j,k)
I

,U(k)
I

r
U
(j,k)
I

,UI

Now, suppose sI ∈ F(UI). Applying ∂ once gives (−1)jr
U
(j)
I ,UI

(sI) and (−1)kr
U
(k)
I ,UI

(sI) as

two of the components in ∂(sI). Now, assume without loss of generality that j < k, then we
must delete the k− 1st entry of I− {j} to get the image of (−1)jr

U
(j)
I ,UI

(sI) in F
(
U

(j,k)
I

)
when

applying ∂ one more time. Thus, the image of ∂2(sI) in F
(
U

(j,k)
I

)
is, taking into account

the commutativity of the above diagram, given by

(−1)k−1(−1)jr
UI,U(j,k)

I

(sI) + (−1)k(−1)jr
UI,U(j,k)

I

(sI) = 0.

□

3We do not mean homology theory here in the sense of the Eilenberg-Steenrod axioms, but rather in a more
informal way. Indeed, Čech homology fails to be a homology theory in this sense and one needs a stronger
version of it to get a proper homology theory.
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Definition 2.23 (Čech homology). For a Čech complex (Č•(U;F),∂•) the Čech homology
of X on U with coefficients in F is defined to be the homology of the Čech complex, i.e.,

Ȟn(U;F) := Hn(Č•(U;F)). (12)

Proposition 2.24 (Induced map on homology). Let ϕ : F → G be a map of cosheaves on X.
We then have a map on Čech homology ϕ• : Ȟ•(U;F)→ Ȟ•(U;G).

Proof. To show this we need to construct a chain map ϕ∗ : Č•(U;F) → Č•(U;G). Thus,
fix some n ⩾ 0 and let

ϕn :
⊕

|I|=n+1

F(UI)→
⊕

|I|=n+1

G(UI) (13)

be the map which on basis elements sI ∈ F(UI) is defined to be

ϕn(sI) := ϕUI
(sI). (14)

To see that this is a chain map, we must verify that ϕn ◦ ∂n+1 = ∂n+1 ◦ ϕn+1. Thus, let
sJ ∈ F(UJ). We then have that

(ϕn ◦ ∂n+1)(sJ) = ϕn

(
n+1∑
k=0

(−1)kr
U
(k)
J ,UJ

(sJ)

)
=

n+1∑
k=0

(−1)kϕ
U
(k)
J

(
r
U
(k)
J ,UJ

(sJ)

)
(15)

and

(∂n ◦ϕn+1)(sJ) = ∂n
(
ϕUJ

(sJ)
)
=

n+1∑
k=0

(−1)kr
U
(k)
J ,UJ

(ϕUJ
(sJ)). (16)

As ϕ is a natural transformation we have that ϕ
U
(k)
J

◦ r
U
(k)
J ,UJ

= r
U
(k)
J ,UJ

◦ϕUJ
and hence the

two sums are equal showing that ϕ∗ is a chain map. This means we have an induced map
ϕ• on Čech homology as desired. □

We now turn our attention to study some examples of abstract simplicial complexes and
their Čech homology.

Example 2.25 (Task 3 (1)). Consider the standard triangulation of the line segment [0, 1] given
by L := 2{0,1}, the power set of {0, 1}. As Čech homology with coefficients in a constant cosheaf on an
ASC is the same thing as simplicial homology, we have that

Ȟn(StL;k) =

{
k, if n = 0

0, else
(17)

which is the same as the homology of a single point. On the other hand, consider the functor
F : StL → Veck defined by

F(st(σ)) =

{
k, if σ ∈ {{0}, {0, 1}}
0, else

and F(st({0, 1}) ⊂ st({0})) = 1k with the other inclusion being zero. Using the lexicographical
ordering on L we then have the Čech complex

0 k k 0
∂1

with ∂1 = 1k. Hence the Čech homology of L with coefficients in the cosheafification of F is zero
which is not the same as the homology of a single point.



7

Example 2.26 (Task 3 (2)). Consider the standard triangulation of the circle S1 := 2{0,1,2} \

{0, 1, 2}. Again, since Čech homology with coefficients in the constant cosheaf k is the same thing as
simplicial homology, we have that

Ȟn(StS1 ;k) =

{
k, if n = 0, 1
0, else.

(18)

On the other hand, let σ = {0} and consider the skyscraper cosheaf σk∗ . This has an associated Čech
complex given by

0→ k→ 0 (19)
which has the homology of a point

Ȟn(StS1 ;σk∗) =

{
k, if n = 0

0, else.
(20)

Example 2.27 (Task 3 (3)). Consider the standard triangulation of the line segment L = 2{0,1}.
Define a cosheaf F on L by the following data

F(st(σ)) =

{
k2, if σ ∈ {0, 01}
k, else.

F(st(σ) ⊂ st(τ)) =

{
1k2 , if σ = {0, 1} and τ = {0}[
1 0

]
, else.

We then define a strict monomorphism ϕ : kL → F by the following data

ϕσ =


[
1

0

]
, if σ ∈ {0, 01}

1k, else.
(21)

We can picture the situation as in the following diagram

k k k

k2 k2 k

1k1k

1T1
k2

1 1k1

where 1 is the matrix
[
1
0

]
. The Čech complex for F then becomes

0→ k2
A−→ k3 → 0 (22)

where A is the matrix

A =

 1 0
−1 0
0 −1

 .

We see that kerA = 0 and hence Ȟ•(StL;F) has the same homology as Ȟ•(StL;kL). Moreover,
the induced map on homology is non-zero and hence must be an isomorphism. Since 1 is not an
isomorphism we have that ϕ is a strict monomorphism. Thus, we see that there exists a cosheaf F
and a strict isomorphism kL → F which induces isomorphism on Čech homology.
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There is no dual situation to the above example.

Proposition 2.28. Let U ′ be a fixed finite open cover on X such that each U ∈ U ′ is contained
in a connected component of X. Then there does not exist a strict epimorphism ϕ : kX → F for the
Čech open cover U generated by U ′ which induces an isomorphism on Čech homology.

Proof. Let ϕ : kX → F be a strict epimorphism and let X =
∐
i Xi be the connected

components of X. Note that Čech homology preserves coproducts and so

Ȟ•(U,F) =
⊕
i

Ȟ•(U |Xi ;F |Xi). (23)

In particular, the morphism ϕ• : Ȟ•(U,kX) → Ȟ•(U,F) splits as the morphism ⊕iϕi where
ϕi is the morphism Ȟ•(U |Xi ,kXi) → Ȟ•(U |Xi ,F |Xi). We can therefore, without loss of
generality, assume that X is connected.

Now, as ϕ is a strict epimorphism, there must exist some U ∈ U ′ such that F(U) = 0.
For any other U ′ ∈ U ′ we then have that there is a sequence of nonempty intersections
(U∩U0,U0 ∩U1, . . . ,Un ∩U ′) with Ui ∈ U ′ for i = 0, . . . ,n. Defining coefficients appropri-
ately there is then an element s ∈ Č2(U;F) such that ∂2(s) = t where t is the element in
Č1(U;F) corresponding to U ′. Hence Ȟ0(U;F) = 0 and so ϕ• cannot be an isomorphism as
H0(U;kX) = k. □

Corollary 2.29. There is no strict epimorphism kK → F which induces an isomorphism on
Čech homology.

3. Discrete Morse theory

It is often the case that a mathematical object comes with some sort of “filtration”. The
central idea of persistent homology is to use this filtration to study the homology with
respect to it. In our case, this filtration will be in the form of a sequence of cosheaves on a
simplicial complex, which we will show induces a sequence of coparameterizations.

3.1. Filtered cosheaves.

Definition 3.1 (Filtration, [nLa24]). Let C be a category. A filtered object is an object X ∈ C

equipped with a filtration:
(1) A descending filtration or decreasing filtrations of X is a sequence of morphisms of the

form
· · · → Xn+1 → Xn → Xn−1 → · · · → X. (24)

Equivalently, it is a functor F : (N,⩽)op → C such that F(0) = X.
(2) An ascending filtration or increasing filtration of X is a sequence of the form

X→ · · · → Xn−1 → Xn → Xn+1 → · · · . (25)

Equivalently, it is a functor F : (N,⩽)→ C such that F(0) = X.

When C is the category of cosheaves K we shall only be interested in decreasing filtra-
tions and additionally require that each morphism in the sequence be a monomorphism,
i.e., that each morphism is an inclusion of subcosheaves.

Definition 3.2 (Filtration of cosheaf). Suppose F ∈ CoSh(K), then a filtration of F is a
descending filtration

· · · ϕn+2−−−→ Fn+1
ϕn+1−−−→ Fn

ϕn−−→ Fn−1
ϕn−1−−−→ · · · ϕ1−→ F (26)
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in which ϕi is a monomorphism for all i ∈N. We succinctly write the filtration as (F•,ϕ•).

For a filtration (F•,ϕ•) we say that it is exact if imϕn+1 = kerϕn for all n ⩾ 1 and a
chain complex if imϕn+1 ⊂ kerϕn for all n ⩾ 1.

Given a filtration (F•,ϕ•) of some some cosheaf F and a Čech open cover on X we get,
from Proposition 2.24, a filtration of vector spaces

· · · Ȟ•ϕn+1−−−−−→ Ȟ•(U;Fn)
Ȟ•ϕn−−−→ Ȟ•(U;Fn−1)

Ȟ•ϕn−1−−−−−→ · · · Ȟ•ϕ1−−−→ Ȟ•(U;F0). (27)

Definition 3.3 (Persistent homology). Let X be a topological space (F•,ϕ•) a filtration of
Veck-valued cosheaves on X. The persistent homology of some Čech open cover U of X with
coefficients in the filtration (F•,ϕ•) is defined for n ⩾ 0 and 0 ⩽ k ⩽ l as

Hk,l
n (X;F•) := im(Ȟnϕk ◦ · · · ◦ Ȟnϕl−1 ◦ Ȟnϕl). (28)

3.2. Partial matchings. Before starting our discussion of partial matchings and compat-
ibility we make some definitions.

For a poset (P,⩽) and x,y ∈ P we say that y covers x if and only if {z ∈ P | x < z < y} = ∅
and denote this by x ≺ y.

Definition 3.4 (Graded poset). Let (P,⩽) be a poset. We say that P is graded if it admits
a partition P =

⋃
n∈N Pn into subsets indexed by a dimension so that if x ≺ y then dimy =

dim x+ 1.

A simplicial complex K is a graded by the dimension on its simplices and hence we
have that σ ≺ τ if and only if σ is a codimension one face of τ.

Definition 3.5 (Coparameterization, [CGN15]). Let (C•,∂•) be a chain complex of k-vector
spaces. A coparameterization of (C•,∂•) over a graded poset (P,⩽) is a functor F : (P,⩽)op →
Veck, where we use the notation Fy,x := F(y ⩾ x), such that

(1) Cn =
⊕
x∈Pn

F(x),
(2) the part of ∂n : Cn → Cn−1 from F(y) to F(x) is precisely Fy,x,
(3) Fy,x = 0 for x ̸≺ y.

A morphism of coparameterization θ : F → G is then a natural transformation between the
functors F and G.

Remark 3.6. When considering (K,⊂) as a poset, we have a contravariant functor (K,⊂) →
(Ka,⊂) which maps σ ∈ K to st(σ) ∈ Ka. Up to signs we therefore have that a cosheaf F : Ka →
Veck induces a canonical coparameterization F of Č•(Ka;F) over (K,⊂). More explicitly

F(σ) := F(st(σ)) (29)

and

Fσ,τ =

{
F(st(σ) ⊂ st(τ)), if dimσ = dim τ+ 1

0, else.
(30)

Lemma 3.7. Let θ : F→ G be a map of coparameterizations of (C•,∂•) and (C ′•,∂•) respectively.
Then we have an induced chain map Θ : (C•,∂•)→ (C ′•,∂•) such that Θn = ⊕x∈Pn

θx.

Proof. Let Θ• be given as described. We must then verify that Θn−1 ◦ ∂n = ∂ ′n ◦Θn for
all n ⩾ 1. For s ∈ F(y) we then have that the G(x) part is given by

Θn−1(∂n(s)) = θx(Fy,x(s)) = Gy,x(θy(s)) = ∂
′
n(Θn(s)) (31)

which shows commutativity as desired. □
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Remark 3.8. For a filtration of cosheaves (F•, θ•) we then have a corresponding filtration of
coparameterizations (F•,Θ•) which induces the same maps on homology. In particular, we have that
the persistent homology can be calculated in terms of the coparameterizations:

Hk,l
• (K;F•) = im(H•Θk ◦ · · · ◦H•Θl−1 ◦H•Θl). (32)

Definition 3.9 (Partial matching, [CGN15]). Let (P,⩽) be a graded poset. A partial
matching on (P,⩽) is a subset Σ ⊂ P×P subject to the following axioms:

(1) dimension: if (x,y) ∈ Σ then x ≺ y, and
(2) partition: if (x,y) ∈ Σ, then neither x nor y belongs to any other pair in Σ.

Moreover, Σ is called acyclic if the transitive closure of the relation ◁ defined on pairs in Σ by

(x,y) ◁ (x ′,y ′) iff x ′ ≺ y (33)

generates a partial order. An element x ∈ P is called Σ-critical if no pair in Σ contains x, and we
shall denote the set of all critical elements in P by M.

Definition 3.10 (Gradient part, [CGN15]). Let Σ be an acyclic partial matching on (P,⩽). A
gradient path4 γ of Σ is a strictly ◁-increasing sequence (xi,yi)ni=0 ⊂ Σ arranged in the following
way

γ = x0 ≺ y0 ≻ x1 ≺ y1 ≻ · · · ≻ xn ≺ yn. (34)

For each gradient path γ, we write sγ = x0 and tγ = yn to indicate the source and target of the path
respectively.

Definition 3.11 (Compatible matchings, [CGN15]). Let Σ be an acyclic partial matching
on a poset (P,⩽) and F a coparameterization of a chain complex (C•,∂•) over (P,⩽). We say that
Σ is compatible with F if for each pair (x,y) ∈ Σ, the associated linear map Fy,x : F(y) → F(x) is
invertible.

Given a cosheaf on F : Ka → Veck and an acyclic partial matching Σ on (K,⊂) we have
that the induced coparameterization F is compatible with Σ if and only if for all (σ, τ) ∈ Σ
we have that F(st(σ) ⊂ st(τ)) is invertible, in which case we say that F is compatible with
the partial matching Σ.

Example 3.12. Consider S1 from Example 2.26 with the constant cosheaf kS1 . Letting Σ =
{(0, 01), (1, 12)} we have that Σ is an acyclic partial matching. Moreover, as all maps involved are
identities, and hence invertible, we see that kS1 is Σ-compatible.

Now, given a filtration of cosheaves we can then define what it means to be compatible
with it.

Definition 3.13. Let (F•,ϕ•) be a filtration of Veck-valued cosheaves on K. We say that
(F•,ϕ•) is compatible with an acyclic partial matching Σ on K if Fn is compatible with Σ for all n.

Example 3.14. Expanding on the previous example we can let Fn = k4−nS1 for n < 4 and 0S1
else. Moreover, we let ϕn : Fn → Fn−1 be the inclusion into the n first factors. We then have that
each Fn is Σ-compatible and hence the filtration is compatible with Σ.

4This is not the standard definition in the literature as what we are defining here technically is a cogradient
path.
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3.3. Morse data. Suppose we have some acyclic partial matching Σ on (P,⩽) and a
coparameterization, F, of some chain complex (C•,∂•) over (P,⩽). Our goal is then to
define a new chain complex (CΣ• ,∂Σ• ) and show that it gives the same homology as the old
chain complex.

Definition 3.15 (Multiplicity, [CGN15]). The multiplicity of a gradient path γ = x0 ≺
y0 ≻ x1 ≺ y1 ≻ · · · ≻ xn ≺ yn in Σ is defined to be

Fγ := −F−1yn,xn ◦ Fyn−1,xn ◦ · · · ◦ Fy0,x1 ◦−F
−1
y0,x0 (35)

which is a linear map Fγ : F(x0)→ F(yn). We also call this the index of γ.

In the case where there exists a gradient path γ such that for x,y ∈ M we have y ≻ sγ
and x ≺ tγ, we say that γ flows from y to x. We write y > ′Σ x whenever there exists at least
one such gradient path. As Σ is acyclic, the transitive closure >Σ of > ′Σ defines a graded
partial order on M.

We can then define the Morse chain complex (CΣ• ,∂Σ• ).

Definition 3.16 (Morse data, [CGN15]). The Morse data associated to Σ consists of the
poset (M,⩽Σ) of critical elements along with a sequence of k-vector spaces (CΣ• ,∂Σ• ) where

CΣn :=
⊕
x∈Mn

F(x) (36)

and the part of ∂Σn : CΣn → CΣn−1 corresponding to the map from F(y) to F(x) is given by

FΣy,x = Fy,x +
∑
γ

Ftγ,x ◦ Fγ ◦ Fy,sγ (37)

where the sum is taken over all gradient paths γ flowing from y to x.

The main goal of this section is to prove the following theorem from which all the
results about simplicial complexes will follow. We shall closely follow the strategy used in
[CGN15], with the change that we will dualize everything.

Theorem 3.17 (Sköldberg). Let F be a coparameterization of a chain complex (C•,∂•) of k-
vector spaces over a graded poset (P,⩽) and let Σ be a compatible acyclic matching. Then, the
Morse data (CΣ• ,∂Σ• ) is a chain complex coparameterization over (M,⩾Σ) by FΣ. Moreover, there is
an isomorphism of graded vector spaces

H•(C•,∂•) ∼= H•(C
Σ
• ,∂Σ• ). (38)

As the proof of this theorem is quite complex we shall break it down it several steps.
The first part of this is to utilize an idea by Whitehead where he reduces a CW cell pair
while preserving its homotopy type.

Definition 3.18. Let (x⋆,y⋆) ∈ Σ and define the reduction (P⋆,⩽⋆) with P⋆ = P \ (x⋆,y⋆)
and w ≺⋆ z if either w ≺ z or w ≺ y⋆ ≻ x⋆ ≺ z. This turns (P⋆,⩽⋆) into a graded partial order.

Given a coparameterization F over (P,⩽) one obtains a new coparameterization F⋆ over
(P⋆,⩽⋆) as follows:

• F⋆(w) = F(w), and
• for each covering relation w ≺⋆ z we have the linear map F⋆z,w given by

F⋆z,w := Fz,w − Fy⋆,w ◦ F−1y⋆,x⋆ ◦ Fz,x⋆ . (39)
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We then have that F⋆ coparameterization a new chain complex (C⋆
•,∂⋆•) over the poset (P⋆,⩽⋆

). Moreover Σ restricts to an acyclic partial matching Σ⋆ on (P⋆,⩽⋆).

Proposition 3.19 ([CGN15]). Given the restricted acyclic partial matching Σ⋆ defined above,
(1) Σ⋆ is compatible with the reduced coparameterization F⋆, and
(2) the Morse data associated to Σ⋆ is identical to that of Σ.

Proof adapted from Proposition 3.1 in [CGN15]. For x,y ∈ Σ⋆ we have that Fy,x =
F⋆y,x. To see this, suppose to the contrary that it is not the case that Fy,x = F

⋆
y,x. Then we must

have that F⋆y⋆,x and F⋆y,x⋆ do not vanish. However, this implies that (x,y) ◁ (x⋆,y⋆) ◁ (x,y), a
contradiction.

Now, to show the second point we first note that the critical elements of Σ and Σ⋆ are
the same because (x⋆,y⋆) ∈ Σ. Thus, since F(x) = F⋆(x) for x ∈M, we have that CΣ• = CΣ

⋆

• .
The final point is therefore to show that ∂Σ• = ∂Σ

⋆

• . If γ⋆ is any gradient path of Σ⋆, say

γ⋆ = x0 ≺⋆ y0 ≻⋆ x1 ≺⋆ y1 ≻⋆ · · · ≻⋆ xn ≺⋆ yn, (40)

then it follows by the acyclity of Σ that there is at most one index i ∈ {0, 1, . . . ,n} such that
(xi,yi) ◁ (x⋆,y⋆) ◁ (xi+1,yi+1). Thus there are only two possibilities, either

(1) there is no index i such that the removed pair (x⋆,y⋆) might fit in γ⋆, in which case
γ⋆ is also a gradient path of Σ with Fγ

⋆
= (F⋆)γ

⋆
, or

(2) there is a single such index i, in which case Σ may have both γ⋆ and the unique
augmented path γ, which takes the form

γ = x0 ≺ y0 ≻ · · · ≺ yi ≻ x⋆i ≺ y⋆i ≻ xi+1 ≺ · · · ≻ xn ≺ yn, (41)

as gradient paths.
In the second case it follows that (F⋆)γ

⋆
= Fγ

⋆
+ Fγ. Hence, in either case we have that the

indexes agree which implies that ∂Σ• = ∂Σ
⋆

• . □

If we can show that homology remains unaffected when going from the coparameteri-
zation F to the coparameterization F⋆, then we can remove elements from Σ until F⋆ = FΣ

in which case we have our desired isomorphism H•(C•,∂•) ∼= H•(C
Σ
• ,∂Σ• ). To do this, we

construct a chain map between C• and C⋆
•. For n we let ψn be given blockwise as follows:

for z ∈ Pn and w ∈ P⋆
n, let ψz,wn : F(z)→ F(w) be given by

ψz,wn =


−Fy⋆,w ◦ F−1y⋆,x⋆ , if z = x⋆

1F(z), if z = w
0, else.

(42)

Note that this definition implies that ψn = 1Cn
for n ̸= dim x⋆.

Lemma 3.20. The morphism ψ• : C• → C⋆
• is a chain map.

Dual of proof of Lemma 3.2 [CGN15]. Let z ∈ Pn and w ∈ P⋆
n−1. We shall show that

the blocks of ψn−1 ◦ ∂n and ∂⋆n ◦ψn from F(z) to F⋆(w) = F(w) are equal. More specifically,
we shall show that ∑

z ′∈Pn−1

ψz
′,w
n−1 ◦ Fz,z ′ =

∑
w ′∈P⋆

n

F⋆w ′,w ◦ψ
z,w ′
n . (43)

From Equation 42 we have that the left side of the equation above is nonzero only for z ′ = w
or z ′ = x⋆. The left sum therefore becomes Fz,w +ψx

⋆,w
n−1 ◦ Fz,x⋆ = F⋆z,w.
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If z ̸= x⋆ then the right side of the sum is also equal to F⋆z,w. Hence it suffices to show
that the right side equals F⋆z,w when z = x⋆. In this case the right side becomes∑

w ′∈P⋆
n

F⋆w ′,w ◦ψ
x⋆,w ′
n = −

∑
w ′∈P⋆

n

F⋆w ′,w ◦ Fy⋆,w ′ ◦ F−1y⋆,x⋆ . (44)

Expanding F⋆w ′,w and distributing over terms gives

−
∑
w ′∈P⋆

n

Fw ′,w ◦ Fy⋆,w ′ ◦ F−1y⋆,x⋆ +
∑
w ′∈P⋆

n

Fy⋆,w ◦ F−1y⋆,x⋆ ◦ Fw ′,x⋆ ◦ Fy⋆,w ′ ◦ F−1y⋆,x⋆ . (45)

The second sum is zero since x⋆ ≺ y⋆ implies that there is now ′ ∈ P such that x⋆ ≺ w ′ ≺ y⋆.
Then, as ∂• is a boundary operator we have that

∑
w ′∈P Fw ′,w ◦ Fy⋆,w ′ = 0 which implies that

the first sum is equal to F⋆z,w as desired. □

Dualizing the argument in a similar manner to above for the proof of Lemma 3.3 in
[CGN15] we get a chain map ϕ : C⋆

• → C• which is defined blockwise for w ∈ P⋆
n and

z ∈ Pn as the map ϕw,z
n with

ϕw,z
n =


−F−1y⋆,x⋆ ◦ Fw,x⋆ , if z = y⋆,
1F(z), if z = w,
0, else.

(46)

Proof of Theorem 3.17. Combining the above results, the only thing that remains to
show is that there is a chain homotopy between ϕ• ◦ψ• and the identity on C• and similarly
with ψ• ◦ϕ• and the identity on C⋆

•. Now, ψ• ◦ϕ• = 1C⋆
• and hence it only remains to find

a chain homotopy Θ : C• → C•+1 between ϕ• ◦ψ• and 1C• . To this end, let Θn : Cn → Cn−1
be given blockwise as the map

Θz,z
′

n =

{
F−1y⋆,x⋆ , if z ′ = y⋆ and z = x⋆

0, else.
(47)

We must verify that Θn−1 ◦ ∂n + ∂n+1 ◦Θn = 1Cn
−ϕn ◦ψn. Using the definition of ψn, ϕn,

and Θn blockwise then finishes the proof. □

Lemma 3.21. For θ : F → G a map of Σ-compatible coparameterizations there is an induced
map θ∗ : F∗ → G∗ and induced chain map Θ∗ : C∗• → C

′∗
• such that

(1) for w ∈ P∗ we have θ∗w = θw,
(2) the maps ψF : C• → C∗• and ψG : C ′• → C

′∗
• are compatible with Θ∗ in the sense that the

following diagram commutes⊕
z∈Pn

F(z)
⊕
z∈Pn

G(z)

⊕
w∈P∗

n
F(w)

⊕
w∈P∗

n
G(w),

ψF
n

Θn

Θ∗
n

ψG
n

(3) there is an isomorphism im(H•Θ
∗) ∼= im(H•Θ).

Proof. Let θ∗ be as specified. If s ∈ F(z) and z ̸= x∗ then commutativity follows directly
as θ is a natural transformation. Now, if z = x∗ then we have that the G(w) part of the
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result is given by

(ψG)x
∗,w
n (θx∗(s)) = −Gy∗,w(G

−1
y∗,x∗(θx∗(s)))

= −Gy∗,w(θy∗(F
−1
y∗,x∗(s)))

= θw(−Fy∗,w(F
−1
y∗,x∗(s)))

= θw((ψ
F)x

∗,w
n (s))

showing that ψF and ψG are compatible with Θ∗. Next, to see that Θ∗ is a chain map we
need to show that Θ∗n−1 ◦ ∂∗n = ∂

′∗
n ◦Θ∗n. To do this we precompose with ψFn and get that

Θ∗n−1 ◦ ∂∗n ◦ψFn = Θ∗n−1 ◦ψFn−1 ◦ ∂n
= ψGn−1 ◦Θn−1 ◦ ∂n
= ψGn−1 ◦ ∂ ′n ◦Θn
= ∂

′∗
n ◦ψGn ◦Θn

= ∂
′∗
n ◦Θ∗n ◦ψFn.

Then, since ψ is an epimorphism we get the desired equality Θ∗n−1 ◦ ∂∗n = ∂
′∗
n ◦Θ∗n.

Finally to see that there is an isomorphism im(H•Θ
∗) ∼= im(H•Θ) remember that ψ and

ϕ are inverses of each other when taking homology, i.e., H•ϕF = (H•ψ
F)−1. Now, as taking

homology is functorial, we have that H•Θ∗ ◦H•ψF = H•ψ
G ◦H•Θ. Putting it together we

have
H•Θ

∗ = H•ψ
G ◦H•Θ ◦H•ϕF, (48)

and thus H•ψG provides an isomorphism between the two images. □

Proposition 3.22. Let (F•, θ•) be a filtration of coparameterization and 0 ⩽ k ⩽ l. We then
have that

im(H•(Θ
k)Σ ◦ · · ·H•(Θl)Σ) ∼= im(H•Θ

k ◦ · · ·H•Θl). (49)

Proof. Fix 0 ⩽ k. We then do induction on l ⩾ k. The base case l = k was essentially5

covered in the previous lemma and hence we focus on the inductive step. Thus, suppose it
holds for l ⩾ k ⩾ 0. We want to show it for l+ 1. Now, using the same argumentation as
in the lemma, the induction hypothesis implies that

H•(Θ
k)Σ ◦ · · ·H•(Θl)Σ ∼= H•ψ

k+1 ◦H•Θk ◦ · · ·H•Θl ◦H•ϕl. (50)

Then, as H•(Θl+1)Σ = H•ψ
l ◦H•Θl+1 ◦H•ϕl+1 and H•ϕl ◦H•ψl = 1, we get that

H•(Θ
k)Σ ◦ · · ·H•(Θl+1)Σ ∼= H•ψ

k+1 ◦H•Θk ◦ · · ·H•Θl ◦H•ϕl+1. (51)

Hence H•ψk+1 is an isomorphism between the two images. □

3.4. The simplicial complex case. We finish off this section by utilizing the results from
the previous subsection to construct a filtered Morse chain complex and show that it has
the same homology as the one presented in Definition 3.3.

Let (F•,ϕ•) be a filtration of Veck valued cosheaves on K which is compatible with some
acyclic partial matching Σ on K.

5One just has to iterate the proof from Θ∗ to ΘΣ
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Definition 3.23 (Filtered Morse chain complex). The filtered Morse chain complex asso-
ciated to (F•,ϕ•) is defined to be the chain complexes (ČΣ• (StK;Fn),∂Σ• ) and the maps

Ψn• : ČΣ• (StK;Fn)→ ČΣ• (StK;Fn−1) (52)

where Ψnj :=
⊕
σ∈Mj

ϕn,st(σ).

Lemma 3.24. The maps Ψn• are chain maps for all n ∈ N and hence we have induced maps on
homology

· · · Ȟ
Σ
• Ψ

n+1
•−−−−−→ ȞΣ• (StK;Fn)

ȞΣ
• Ψ

n
•−−−−→ ȞΣ• (StK;Fn−1)

ȞΣ
• Ψ

n−1
•−−−−−→ · · · Ȟ

Σ
• Ψ

1
•−−−→ ȞΣ• (StK;F0). (53)

Proof. In each step of removing elements when going from C• to CΣ• the maps Θ∗ are
all chain maps and so it follows that ΘΣ is too. Hence, as ψn• = ΘΣ in this scenario, the
result follows. □

Proposition 3.25. The persistent homology of the filtered Morse chain complex for K, as de-
scribed previously, is the same as the persistent homology for the Čech open cover StK.

Proof. Let (F•, θ•) be the associated filtration of coparameterizations associated to (F•, θ•).
Now, by definition of being a filtration of coparameterizations we know that we can use this
filtration as a replacement for the filtration of cosheaves and get the exact same persistent
homology. The claim then follows directly from Proposition 3.22. □

Now, the Scythe algorithm in [CGN15] can be suitably dualized to provide an algorithm
for finding a Morse coparameterization of a cosheaf on a finite poset. Combining this
with Proposition 3.25 we have a way to speed up computing the persistent homology of
a sequence of cosheaves over a finite simplicial complexes. The key assumption being
made here is that simplicial complex is finite as this means each coparameterization can
be represented in memory. In fact, our results in this essay implies something a bit more
general; using a dualized version of Scythe there is an efficient way of computing persistent
homology of a sequence of coparameterizations over a finite poset.
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