
Categorical Models of Concurrency
Candidate #1080882

Contents

1. Introduction 1

1.1. Our contribution 3

2. Petri nets 4

3. Resource calculi 4

3.1. Syntax 4

3.2. Semantics 6

3.3. An affine extension 7

3.4. A stateful extension 8

4. Putting it all together 10

4.1. The Petri prop 10

4.2. Expressiveness of Rcs and Rcsa 11

4.3. Conductors 12

References 13

1. Introduction

The dining philosophers problem is often used to introduce students to the concepts of
concurrency. The problem was first given by Edsger Djisktra as a student exam exercise
[Dij65] and was later reformulated to its modern day form by Tony Hoare [Hoa85]. He
presents it in the following way:

In ancient times, a wealthy philanthropist endowed a College to accom-
modate five eminent philosophers. Each philosopher had a room in which
he could engage in his professional activity of thinking; there was also a
common dining room, furnished with a circular table, surrounded by five
chairs, each labelled by the name of the philosopher who was to sit in
it. The names of the philosophers were PHIL0 , PHIL1, PHIL2 , PHIL3 ,
PHIL4, and they were disposed in this order anticlockwise around the ta-
ble. To the left of each philosopher there was laid a golden fork, and in the
centre stood a large bowl of spaghetti, which was constantly replenished.
A philosopher was expected to spend most of his time thinking; but when
he felt hungry, he went to the dining room, sat down in his own chair,
picked up his own fork on his left, and plunged it into the spaghetti. But
such is the tangled nature of spaghetti that a second fork is required to

1

2 CANDIDATE #1080882

rightHandEmpty thinking eating leftHandEmpty

putRightFork

takeRightFork

startThinking

startEating

putLeftFork

takeLeftFork

PHIL0

leftHandEmpty eating thinking rightHandEmpty

putLeftFork

takeLeftFork

startThinking

startEating

putRightFork

takeRightFork

PHIL1

fork1Free fork2Free

Figure 1. A Petri net model for the dining philosophers problem in the spe-
cial case of only two philosophers. The tokens have been placed in the starting
position where both philosophers are currently in the thinking state and have
both hands free.

carry it to the mouth. The philosopher therefore had also to pick up the
fork on his right. When he was finished he would put down both his forks,
get up from his chair, and continue thinking. Of course, a fork can be used
by only one philosopher at a time. If the other philosopher wants it, he just
has to wait until the fork is available again.

In Fig. 1 we have pictured this scenario for two philosophers—the situation for five philoso-
phers is analogous, but there is little to gain in terms of intuition by drawing the full Petri
net—as a Petri net with the specific starting state of both philosophers having their hands
free and thinking. One could imagine a scenario where each philosopher has sat down
to eat, picked up their right fork, and realized the fork to their left is currently in use by
another philosopher. The process has ended up in a deadlock. The corresponding Petri net
is the one depicted in Fig. 2 where we can see that neither philosopher has enough tokens
to move into the eating state.

3

rightHandEmpty thinking eating leftHandEmpty

putRightFork

takeRightFork

startThinking

startEating

putLeftFork

takeLeftFork

PHIL0

leftHandEmpty eating thinking rightHandEmpty

putLeftFork

takeLeftFork

startThinking

startEating

putRightFork

takeRightFork

PHIL1

fork1Free fork2Free

Figure 2. The two philosophers have now transitioned to a deadlock state
where neither are able to eat unless the other decides to put down his or her
fork. In the case of two greedy philosophers this would cause both philoso-
phers to die of starvation.

The goal is to design a protocol which ensures no philosopher dies of starvation. One
approach could be to try to extend the Petri net in Figure 1 with more places and transitions
and then try to reason about this new system. However, a problem with this traditional
approach to studying Petri nets is that it is monolithic, in the sense that one studies Petri
nets as closed systems. This is contrary to the ethos of category theory where the central
theme is compositionality. Taking a categorical approach would allow us to develop small
“Lego pieces” which we could piece together into more complex systems.

1.1. Our contribution. The main new contribution of this text is the construction of the
conductor in the framework of resource calculi. More specifically, in Section 4.3 we introduce
a class of components in Rcsa with zero input wires that has the ability to synchronize the
otherwise asynchronous Petri places. Proposition 4.7 gives their semantics in the stateful
extension of polyhedral relations, St(PolyRel)

4 CANDIDATE #1080882

2. Petri nets

We have already seen how Petri nets can be used to model concurrent processes. They
were introduced by Carl Adam Petri in his PhD dissertation [Pet62] as a graphical formal-
ism for studying distributed systems. There are several equivalent ways of defining them,
but we will use the formalism presented in [Bru+13].

Definition 2.1 (Petri net). A Petri net, is a tuple P = (P, T , ◦−,−◦) consisting of
• a finite set of places P,
• a finite set of transitions T ,
• functions ◦−,−◦ : T → NP.

In the Petri net of the dining philosophers we also had a way of indicating the current
state via tokens. The formal way to do this is via markings.

Definition 2.2 (Marked Petri net). A marked Petri net is a tuple M = (P,m0) consisting
of

• a Petri net P = (P, T , ◦,−◦),
• a function m0 : P → N called the initial marking of P.

The initial marking of a marked Petri net specifies the starting state of the system. In
the dining philosophers problem, the initial marking is the one where all philosophers are
thinking and all forks are free. That is to say, we place one token on each of these places,
as in Fig. 1.

Now, the way we think about a Petri net is in terms of what states can be reached from
the current one if we expend the necessary tokens. The formal way of defining this is
through a firing.

Definition 2.3 (Firing). Let P = (P, T , ◦−,−◦) be a Petri net. A firing of P is a tuple (m,m ′)
where m,m ′ ∈ NP are markings such that there exist t ∈ T with ◦t ⩽ m and m ′ = m− ◦t+ t◦.
We prefer to write a firing (m,m ′) as m → m ′ and define the set of firings to be

Fire(P) := {(m,m ′) | m → m ′}. (1)

The set of firings, Fire(P), gives us the firing semantics of a Petri net P. This is the desired
operational semantics which instructs us to understand Petri nets in terms of their firing
relations. An important point, which will be made clear later, is that Fire(P) is an additive
relation.

3. Resource calculi

The starting point for finding a categorical model which extends the model of Petri
nets we explored in the previous section, will be resource calculi. In the following we
shall assume familiarity with the technicalities of string diagrams for symmetric monoidal
categories (SMCs), a great resource for those not familiar is [Sel10]. We will use the standard
convention of representing the identity, symmetry, and identity on the monoidal unit by

, , and , respectively.

3.1. Syntax. We will define different resource calculi in terms of signature and hence
we take a small detour to discuss some aspects of this construction.

Definition 3.1 (Signature). The category of signatures is the functor category SetN×N where
objects are functors and morphisms are natural transformations.

5

The following result allows us to speak about freely generated props on a signature.

Proposition 3.2 ([Pie18]). There is a monadic forgetful functor U : Prop → SetN×N sending
a prop to its underlying signature. This means that U has a left adjoint P : SetN×N → Prop and
that the category of algebras for the monad UP is equivalent to the category of props.

Proof. As Piedeleu [Pie18] mentions, this is a generalization of Lawvere’s original result
[Law63] and the reader is referred to [Pie18, Proposition 29] for the details. □

Another common way to describe a prop is through a presentation, i.e., a set of gener-
ators and equations between terms built out of the generators. More formally, we have the
following result.

Proposition 3.3 ([Pie18]). Any prop is the coequalizer in Prop of two parallel prop morphisms
of the form

PE PΣ
λ

ρ

for two signatures E and Σ.

Proof. Let T be a prop and set ϵ : PU → 1 to be the counit in the adjunction of Propo-
sition 3.2. Set Σ = UT , E = UPUT , λ = PUϵT , and ρ = ϵPUT . We then have the map
ϵT : PΣ → T which one can check satisfies the universal property. □

Definition 3.4 ([Pie18]). A presentation of a prop T is the data (E,Σ, λ : PE → PΣ, ρ : PE →
PΣ) such that T is the coequalizer of the corresponding diagram.

It is often the case that we start with some prop T which has a presentation (E,Σ, ρ, λ)
and want to add some equations between pairs of morphisms in T . That is to say, we have
a functor X : N × N → Set and a pair of morphisms l, r : X → UPΣ. We want to create a
new prop, which by Proposition 3.3 is the same as specifying a new presentation.

Definition 3.5. Let (E,Σ, λ, ρ) be a presentation of a prop T and suppose X : N × N → Set
is a set of equations with corresponding maps l, r : X → UPΣ. The prop T/X is defined to be the
coequalizer of the following diagram

PE+ PX PΣ.
λ+Pl;ϵPΣ

ρ+Pl;ϵPΣ

We are now in a position to formally define Rc through a presentation.

Definition 3.6. Consider the following signature

Σ = { : (1, 2), : (1, 0), : (2, 1), : (0, 1), : (2, 1), : (0, 1)}. (2)

Define the prop of circuits to be Circ := PΣ. Then, using the syntactic sugar

:= := (3)

we define the resource calculus, Rc, to be Circ modulo the equations presented in Fig. 3.

6 CANDIDATE #1080882

Figure 3. Presentation of Rc due to [Bon+19a].

3.2. Semantics. The next goal is to define a category of semantics and find a prop
isomorphism between the syntax category Rc and a certain operational semantics category.

Definition 3.7. Let S be a semiring. Define RelS to be the prop whose arrows n → m are
relations R ⊂ Sn × Sm. Moreover, given R : n → m and R ′ : m → l we let

R ; R ′ := {(x, z) | ∃(x,y) ∈ R∧ (y, z) ∈ R ′}. (4)

The monoidal product of two relations R : n1 → m1 and R ′ : n2 → m2 is gotten by taking the
Cartesian product of the two relations, i.e.,

R1 ⊕ R2 :=

{((
x1
x2

)
,
(
y1

y2

))
| (x1,y1) ∈ R1 ∧ (x2,y2) ∈ R2

}
. (5)

Identities and symmetry are defined in the obvious ways.

An important special case for the resource calculus is that of S = N and its sub-prop of
additive relations.

Definition 3.8 ([Bon+19b]). An additive relation of type k → l is a subset R ⊂ Nk × Nl

such that
(i) (0, 0) ∈ R and,

7

(ii) if (a,b), (a ′,b ′) ∈ R then (a+a ′,b+b ′) ∈ R.
Define AddRel to be the sub-prop of RelN where the maps of type k → l are finitely generated
additive relations instead of general relations on N.

Inherent in the above definition is the claim that AddRel is a prop. The proof of this can
be found in [Pie18].

We can now define the prop morphism which gives us our semantics.

Definition 3.9. Let J− K : Rc → AddRel be the unique map which on the generators of Rc is
given by:

q y
=

{((
n
m

)
,n+m

)
| (n,m) ∈ N2

}
J K = {(ϵ, 0)}

q y
=

{((
n
n

)
,n
)

| n ∈ N

}
J K = {(n, ϵ) | n ∈ N}

q y
=

{(
n,
(
n
n

))
| n ∈ N

}
J K = {(ϵ,n) | n ∈ N}

where ϵ is the unique element of N0.

It turns out that J− K is an isomorphism of props. For the details of the proof we refer
to [Bon+19a, Section 3].

Theorem 3.10. The semantics J− K : Rc → AddRel is a prop isomorphism.

3.3. An affine extension. The prop isomorphism J− K : Rc → AddRel shows us how the
resource calculus Rc completely describes additive relations. However, when we want to
design concurrent systems, it is often a good idea to make use of mutual exclusion which
we can think of as a gate which has semantics

r z
=

{((
1
0

)
, 1
)((

0
1

)
, 1
)

,
((

0
0

)
, 0
)}

. (6)

The problem with this is that the above relation is not additive. Hence we need another
category of operational semantics to encode this behaviour. Piedeleu [Pie18] identified this
category as the category of polyhedral relations and we will give a description of it here.

Definition 3.11 (Discrete polyhedron). A discrete polyhedron is a set Q ⊂ Nd for which
there exist finite B,D ⊂ Nd such that Q = P(B,D) where

P(B,D) =
⋃
b∈B

{b+ ⟨D⟩} (7)

and ⟨D⟩ is the set of finite linear combinations of elements of D.

The intuition behind P(B,D) is that it is the polyhedron generated by B and D. The
elements of B are base points and elements of D are the directions.

Definition 3.12 (Polyhedral relation). A polyhedral relation of type k → l is a discrete
polyhedron R ⊂ Nk × Nl.

Piedeleu [Pie18] showed that the composition of two polyhedral relations is again a
polyhedral relation. Hence we can talk about the sub-prop PolyRel ⊂ RelN of polyhedral
relations.

The last thing we need to do is to specify our syntax.

8 CANDIDATE #1080882

Definition 3.13. Let Rca be the prop freely generated over the same signature as Rc with the
additional generator : (0, 1) and the following equations

(dup)
=

(del)
=

(∅)
=

(cons)
=

It turns out that Rca gives a complete and sound calculus for PolyRel.

Theorem 3.14 ([Pie18]). Let J− Ka : Rca → PolyRel be the unique extension of J− K : Rc →
AddRel where

J Ka := {(ϵ, 1)}. (8)

Then J− Ka : Rca → PolyRel is an isomorphism of props.

Proof. See [Pie18, Theorem 124]. □

Going back to the motivation for looking at Rca and PolyRel we now have a way to build
our mutual exclusion gate. To do this, we first start by defining

:= (9)

which then has semantics

J Ka = {(0, 0), (1, 1)} . (10)

Composing with we then get our desired mutual exclusion gate. The point of this
is that Rca is an expressive resource calculus which allows us to model stateless concurrent
processes. However, to get state, we need to extend it.

3.4. A stateful extension.

Definition 3.15 ([Pie18]). Let T be a prop. Define St(T) as the prop where:

• morphisms of type k → l are pairs (s, c) where s ∈ N and c : s+ k → s+ l is a morphism
of T, quotiented by the smallest equivalence relation which includes

σ
d

σ
d∼

s

k

s

l k

s s

l
(11)

for all permutations σ : s → s,
• the composition of (s, c) : k → l and (t,d) : l → p is (s+ t, e) where e is the arrow of T

given by
s

t

k l p

t

s

c d
(12)

9

• the monoidal product of (s1, c1) : k1 → l1 and (s2, c2) : k2 → l2 is (s1 + s2, e) where e is
given by

s1

k1

k2 l2

l1

s1

c1

c2

s2 s2
(13)

• the identity on k is (0, 1j) and the symmetry of k, l is (0,σk,l).

Skipping some straightforward, but tedious, details this extends to an endofunctor St :
Prop → Prop.

Now, define X to be the prop freely generated on the generator x : (1, 1) and no
equations. We then have the following result which characterizes St(T).

Theorem 3.16. If T is compact closed, then there exist an isomorphism of props T+ X ∼= St(T).

Proof. We will only give a sketch of the proof here, the full version of the proof can be
found in [Pie18].

To show that T+ X is isomorphic to St(T) we must find two monoidal functors Z : T →
St(T) and R : X → St(T) which together gives an isomorphism F := ⟨Z,R⟩ : T+ X → St(T).
Defining R is straightforward as we only need to specify where x is mapped to. Thus,
let R(x) := (1,). The intuition here is that x acts as a register and hence in the
stateful extension this amounts to switching what is in the current state with the new value.

Now, define Z : T → St(T) by Z(t) = (0, t). To see that F is an isomorphism we explicitly
define the inverse G : St(T) → T+ X by

G

s

k

s

l

d

 :=

s

k l

d
x

(14)

We first show that FG = 1. Thus, let (s,d) be a morphism in St(T). We then have that

FG((s,d)) = FG

s

k

s

l

d



= F

 s

k l

d
x



=
s

k l

d

s

=

s

k

s

l

d .

10 CANDIDATE #1080882

The other direction uses a technical result which says that every morphism in T+ X can be
written in trace canonical form when T is compact closed. More concretely it says that for
every c : k → l in T+ X there exists a unique morphism d : s+ k → s+ l of T such that

ck l = k ld
x

(15)

Thus, given a c : k → l in T+ X we have that

GF(c) = GF
(

ck l
)

= GF


k ld

x



= G

s

k

s

l

d



= k ld
x

= ck l.

□

The moral of the story is that adding state to a compact closed prop, is the same as
adding a generator which acts as a synchronous register. Now, as Rca is compact closed we
define the stateful affine resource calculus to be Rcsa := Rca+X. We then have a sound and
complete semantics, i.e., an isomorphism J− Ksa : Rcsa → St(PolyRel) via the composition

Rca + X
⟨Z,R⟩−−−→ St(Rca)

St(J− Ka)−−−−−−→ St(PolyRel). (16)

4. Putting it all together

4.1. The Petri prop. We are now in a position to properly define the prop Petri in which
we can embed our previous notion of Petri nets. The benefit of this is that we immediately
get a notion of an open Petri net which lends itself to being studied compositionally as
opposed to monolithically.

Definition 4.1. Let Petri be the prop Rc+ PI where PI is the prop generated by : (1, 1)
and no equations.

Theorem 3.16 implies that Petri is isomorphic to St(Rc). However, this leads to an
unnatural semantics in St(AddRel). We therefore start by choosing an appropriate semantics
J− Kp : Petri → St(AddRel) and then use the semantics to interpret Petri in Rcs := Rc+X. To
specify a semantics J− Kp : Petri → St(AddRel) it suffices to specify the semantics of ,
seeing as the semantics of Rc is given by J− K : Rc → AddRel.

11

Definition 4.2. Define J− Kp : Petri → St(AddRel) to be the unique extension of J− K : Rc →
AddRel such that

J Kp :=

{((
p
m

)
,
(
p+m−n

n

))
| n ⩽ p

}
=

t |

. (17)

The intuition behind J− Kp is that it interprets to currently hold p tokens and
ensure that the tokens that flows out of the state are no more than what it currently holds.

For the prop Petri to be of use it must tell us how to reinterpret Petri nets in this new
formalism.

Definition 4.3 ([Pie18]). Let P = (P, T , ◦−,−◦) be a Petri net. Define dP ∈ Petri(0, 0) to be

V

U
(18)

where U and V are the matrix representations of ◦− and −◦ respectively.

One needs to be careful in the above definition to check that P 7→ dP is independent of
the ordering on the transitions and places. The interested reader can see [Pie18, Lemma
144] for the details of this.

For Petri to be a good extension of Petri nets, the semantics we are interested in, i.e., the
firing semantics, should remains the same after the assignment P 7→ dP.

Proposition 4.4 ([Pie18]). Let P = (P, T , ◦−,−◦) be a Petri net. We then have that Fire(P) ∼
JdP K, where ∼ is the equivalence relation on morphisms of St(AddRel).

4.2. Expressiveness of Rcs and Rcsa. Having defined the semantics of Petri, a natural
question is how it compares to Rcs. Using G from the proof of Theorem 3.16 tells us what
the image of must be in Rcs. We have that

G

()
= x (19)

The full details of why this must be the image of can be found in [Pie18]. Thus,
for to have the semantics we intend, we must have that P : Petri → Rcs is given by

P() := x (20)

and the identity on Rc. We then have the following result.

Theorem 4.5 ([Pie18]). For all morphisms d in Petri we have that Jd Kp ̸= J x Ks.

Proof. Let d be a morphism in Petri. The claim follows if we can show that Jd Kp has

an element which J x Ks does not have. Thus, consider the pair
((

a
0

)
,
(
a
0

))
. Using

structural induction on d together with the definition of J K we can conclude that((
a
0

)
,
(
a
0

))
∈ Jd Kp. Now, as the image of x under ⟨Z,R⟩ is (1,) it follows that((

a
0

)
,
(
a
0

))
̸∈ J x Ks. □

The main benefit of using x is that we get much more predictable behaviour.

12 CANDIDATE #1080882

4.3. Conductors. Using the full power of Rcsa we can define a conductor which will
allow us to synchronize the asynchronous Petri places . This will allow us to gain
precise control of the dining philosophers and ensure that no one starves. To gain some
intuition about this conductor, consider the following circuit

x

x

(21)

The semantics of this diagram in St(PolyRel) is the following
u

wwwww
v

x

x

}

�����
~

sa

=


(10

)
,


0
1
1
0


 ,

(01
)

,


1
0
0
1



 . (22)

The meaning of the above in words is the following: the only allowed states of the registers
are (1, 0) and (0, 1), and the updated state after one “clock-cycle” is the bit-shifted value of
the current state. Moreover, the output of the two wires is the current state. In this way, if
we imagine the clock continuing to tick, then the output of the two wires on the right will
cycle between (1, 0) and (0, 1) indefinitely.

To make this more formal, we make the following definition.

Definition 4.6. Let

c ′1 := x
(23)

and define the n+ 1th pre-conductor to be

c ′n+1 := c ′n

x

nn (24)

The nth conductor is defined to be the circuit

cn :=
... c ′n

... (25)

We then have the following result.

Proposition 4.7. The semantics of the nth conductor is given by

J cn Ksa =

{(
en
i ,
(

en
i

en
i+1 (mod)n

))
| i ∈ n

}
(26)

where n = {0, 1, . . . ,n− 1} and en
i is the i+ 1th unit vector in Nn.

Proof. One can verify this by using the isomorphism constructed in [Pie18], going back-
wards from St(PolyRel) to Rcsa. The details are quite tedious, so we omit them here for
brevity. □

REFERENCES 13

c4

Figure 4. A conductor connected to a single philosopher. With the starting
state is as indicated in Figure 1 the conductor forces the philosopher to per-
form the transitions in the correct order.

We can now use the conductors to precisely control the actions of the philosophers. To
see how this might be done, consider how the conductor is connected to a single philoso-
pher in Figure 4.1 Given that the starting state is as in Figure 1 then the following sequence
of firings are forced:

(1) The philosopher picks up the right and left fork simultaneously.
(2) The philosopher starts eating.
(3) The philosopher stops eating.
(4) The philosopher puts both forks down simultaneously.

The sequence then repeats indefinitely. Now, if we had used c20 instead of c4, then we
could ensure every philosopher got to eat in order. This is by no means the most efficient
solution, but it is a process that cannot end into a deadlock. Hence no philosopher dies of
starvation, which is our overall goal.

References

[Pet62] Carl Adam Petri. “Kommunikation mit Automaten”. Doctoral Dissertation.
PhD thesis. Bonn, Germany: University of Bonn, 1962.

[Law63] F. William Lawvere. “Functorial Semantics of Algebraic Theories”. In: Proceed-
ings of the National Academy of Sciences of the United States of America 50.5 (1963),
pp. 869–872. issn: 00278424, 10916490. url: http://www.jstor.org/stable/
71935 (visited on 07/04/2024).

[Dij65] Edsger W. Dijkstra. “Dining Philosophers Problem”. In: Presented as a student
exam exercise. 1965.

[Hoa85] C. A. R. Hoare. Communicating sequential processes. USA: Prentice-Hall, Inc.,
1985. isbn: 0131532715.

[Sel10] P. Selinger. “A Survey of Graphical Languages for Monoidal Categories”. In:
Lecture Notes in Physics. Springer Berlin Heidelberg, 2010, pp. 289–355. isbn:
9783642128219. doi: 10.1007/978-3-642-12821-9_4. url: http://dx.doi.
org/10.1007/978-3-642-12821-9_4.

1In order to enhance the readability of the diagram, we have drawn it in a non-standard way. If one is careful
enough, then it is possible to translate this into a proper diagram according to the syntax in Rcsa.

http://www.jstor.org/stable/71935
http://www.jstor.org/stable/71935
https://doi.org/10.1007/978-3-642-12821-9_4
http://dx.doi.org/10.1007/978-3-642-12821-9_4
http://dx.doi.org/10.1007/978-3-642-12821-9_4

14 REFERENCES

[Bru+13] Roberto Bruni et al. “Connector algebras for C/E and P/T nets’ interactions”.
In: Logical Methods in Computer Science Volume 9, Issue 3 (Sept. 2013). issn: 1860-
5974. doi: 10.2168/lmcs-9(3:16)2013. url: http://dx.doi.org/10.2168/
LMCS-9(3:16)2013.

[Pie18] R Piedeleu. “Picturing resources in concurrency”. PhD thesis. University of
Oxford, 2018.

[Bon+19a] Filippo Bonchi et al. “Diagrammatic algebra: from linear to concurrent sys-
tems”. In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019). doi: 10.1145/3290338.
url: https://doi.org/10.1145/3290338.

[Bon+19b] Filippo Bonchi et al. “Graphical Affine Algebra”. In: 2019 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). 2019, pp. 1–12. doi: 10.1109/
LICS.2019.8785877.

https://doi.org/10.2168/lmcs-9(3:16)2013
http://dx.doi.org/10.2168/LMCS-9(3:16)2013
http://dx.doi.org/10.2168/LMCS-9(3:16)2013
https://doi.org/10.1145/3290338
https://doi.org/10.1145/3290338
https://doi.org/10.1109/LICS.2019.8785877
https://doi.org/10.1109/LICS.2019.8785877

	1. Introduction
	1.1. Our contribution

	2. Petri nets
	3. Resource calculi
	3.1. Syntax
	3.2. Semantics
	3.3. An affine extension
	3.4. A stateful extension

	4. Putting it all together
	4.1. The Petri prop
	4.2. Expressiveness of Rcs and Rcsa
	4.3. Conductors

	References

