Implementing Agentic Context Engineering

A Practitioner’s Account of Evolving Al Context

Mika Bohinen

January 2026

This report documents my personal implementation of Agentic Context Engineer-
ing (ACE) as a plugin for OpenCode. The current system evolved from an earlier,
more primitive version developed for Claude Code, which was itself shaped during
the construction of production infrastructure for the Lie-Stgrmer Center, Norway’s
first national mathematics research center. The work presented here is not a rigor-
ous evaluation but rather a technical narrative describing how I have structured an
agentic development workflow around the ACE concepts introduced by Zhang et al.
[Zha+25]. The implementation remains under active development, the source code is
not publicly available due to tight coupling with my personal development environ-
ment, and the observations reported are entirely anecdotal. What I offer is a detailed
account of architectural decisions, the reasoning behind them, and how the resulting
system aligns with my mental model for approaching complex development tasks.
The report describes a session-based evidence trail architecture, a deferred curation
mechanism for playbook updates, typed effect declarations for agent capabilities,
and a tool-based query interface that replaces earlier agent-mediated approaches. 1
draw on recent work in recursive language models [ZKK25] to provide theoretical
framing, and I sketch a speculative connection to algebraic effect systems that has
guided my thinking about agent composition. Readers with a taste for abstract
nonsense will find a categorical treatment of concurrent updates involving monoid
actions and missing pushouts; readers who value their time will find a table of con-
tents. The implementation itself should be understood as a working prototype rather
than a validated system.

Contents

1

Introduction

1.1 The Three-Role Architecture
1.2 Contributions e
1.3 Prior Approach e

System Context

2.1 The Orchestration Framework
2.2 Workflow Execution Model
2.3 Context Management Considerations
2.4 Task Organization L e
2.5 Relationship to Prior Worko o

Implementing Agentic Context Engineering 2
3 Orchestrator Architecture 8
3.1 Execution Model e 8
3.2 The Coordinator Pattern 8
3.3 Composition Constraints i i 10
3.4 Prompt Composition 10
3.5 Permission Model 11
3.5.1 Tools as Effects, Implementations as Handlers 12

3.5.2 Agent Effect Declarations 12

3.5.3 Effect Composition Through Workflows 13

3.5.4 Toward Typed Agents 13

3.5.5 The Two-Level Rule as Effect Restriction 14

3.5.6 What I Cannot Yet Formalize 14

3.5.7 Why I Include This Sketch, 14

4 Theoretical Foundation 15
4.1 The Environment Paradigm 15
4.2 Implications for Playbook Design oL 15
4.3 Session Isolation and Deferred Mutation 15

5 Design Evolution 16
5.1 The Previous Implementation o L. 16
5.2 Limitations Observed in Practice 16
5.3 Theoretical Analysis of Concurrent Access 17
5.4 Orchestrator Refinement 20
5.5 Insights from Recursive Language Models 21
5.6 The Current Implementation 22

6 Architecture 23
6.1 Playbook Store 23
6.2 Session Evidence Trail Lo o 23
6.3 Tool Interface e 25
6.4 Agent Definition Schema Lo 26

7 The Learning Loop 27
7.1 Hook-Based Promotion. e 27
7.2 Orchestrator Integration L 28
7.3 Extension Mechanisms and Context Economy 28

8 The Workflow in Practice 29
8.1 Phase Structure and Human Oversight 29
8.2 Directory Structure and State Flow 30
8.2.1 Task Directory e 30

8.2.2 Session Directory 33

8.2.3 State Flow Across Phases, 34

8.3 Playbook Integration Points Lo o o 34
8.4 Concrete Example 35
8.5 Correspondence with the Learning Loop 36

9 Discussion 36
9.1 Relationship to Prior Work oo 36
9.2 Cost Considerations e e 37
9.3 Limitations L e e 37

Implementing Agentic Context Engineering

9.4 Future Directions e

10 Conclusion

References

Implementing Agentic Context Engineering 4

1 Introduction

Before proceeding, I wish to be transparent about the nature of this work. This report describes
my personal implementation of the Agentic Context Engineering framework, developed over
several months of daily use in my own software development practice. The system remains
under active development and architectural decisions continue to evolve as I encounter new
requirements and edge cases. The source code is not publicly available, primarily because it is
tightly integrated with my personal development environment (a Nix-based monorepo) in ways
that would make extraction difficult without substantial refactoring. The observations and
assessments I present are based entirely on my own experience; I have not conducted controlled
experiments, and I make no claims about generalizability beyond my specific use case. What
I can offer is an honest account of how I think about agentic development workflows and how
this thinking has been instantiated in working code.

Now, modern applications of large language models increasingly depend on context adapta-
tion. Modifying inputs with instructions, strategies, or evidence rather than updating model
weights. This paradigm offers several advantages. Contexts are interpretable and can be audited
for correctness. They permit rapid integration of new knowledge at runtime without retrain-
ing. They can be shared across models or modules in compound systems, enabling consistent
behavior across heterogeneous components. Zhang et al. [Zha+25]

Despite these benefits, existing approaches to context adaptation face two fundamental limita-
tions that Zhang et al. [Zha+25] identify and address through the Agentic Context Engineering
framework.

Definition 1.1 (Brevity Bias). The tendency of context optimization methods to collapse
toward short, generic prompts that prioritize conciseness over comprehensive accumulation of
domain-specific heuristics, tool-use guidelines, and common failure modes.

Definition 1.2 (Context Collapse). A phenomenon wherein methods that rely on monolithic
rewriting by a language model degrade accumulated context into shorter, less informative sum-
maries over time, causing sharp performance declines.

The ACE framework addresses these limitations by treating contexts not as concise summaries
but as comprehensive, evolving playbooks. These playbooks are detailed, inclusive, and rich
with domain insights. Zhang et al. [Zha+25] argue that unlike humans, who often benefit from
concise generalization, language models perform more effectively when provided with long,
detailed contexts from which they can distill relevance autonomously.

1.1 The Three-Role Architecture

ACE introduces a division of labor across three specialized roles that mirrors how humans
learn through experimenting, reflecting, and consolidating (Figure 1). The Generator produces
reasoning trajectories by executing tasks using the current playbook as context. The Reflector
critiques these trajectories to extract lessons, optionally refining them across multiple iterations.
The Curator synthesizes lessons into compact delta entries that are merged deterministically
into the existing context.

This report describes our implementation of these concepts as a native plugin for the Open-
Code orchestration framework, with particular attention to the architectural decisions that
enable concurrent operation and the theoretical foundations that justify our approach.

1.2 Contributions

Our implementation makes three primary contributions. First, we introduce a session-based
evidence trail architecture that decouples pattern usage tracking from playbook mutation, en-
abling multiple concurrent sessions to operate without coordination. Second, we implement a

Implementing Agentic Context Engineering 5

Trajectory Insights
Generator Reflector Curator

Context Delta

Playbook

Figure 1: The ACE three-role architecture. The Generator produces reasoning trajectories,
the Reflector distills concrete insights from successes and errors, and the Curator
integrates these insights into structured context updates.

deferred curation mechanism that queues updates for batch application, eliminating race condi-
tions while preserving the evidence trail required for reflection. Third, we provide a tool-based
interface that treats the playbook as an external environment variable, drawing on insights from
recursive language model research [ZKK25] to justify this design.

1.3 Prior Approach

Prior to this implementation, playbook access required spawning a dedicated search agent to
query multiple playbook files. This approach introduced substantial latency due to agent ses-
sion overhead and prevented systematic tracking of which patterns proved useful during task
execution. The current implementation addresses these limitations through native tool integra-
tion, consolidated playbook storage, session-centric attribution tracking, and deferred curation
for concurrent update safety.

2 System Context

Before describing the evolution of our implementation, we establish the execution environment
within which ACE operates. Our implementation is tightly coupled with an orchestration
framework that provides multi-agent coordination, and understanding this context is essential
for appreciating the architectural decisions that follow.

2.1 The Orchestration Framework

The implementation operates within OpenCode, which describes itself as “the open source Al
coding agent” [SST26]. The framework supports over 75 language model providers and oper-
ates across terminal, IDE, and desktop environments, providing a plugin architecture through
which developers can extend its capabilities with custom tools and workflows. We have de-
veloped an orchestrator plugin for this framework that coordinates multiple specialized agents
to accomplish complex tasks. This orchestrator remains under active development; the archi-
tecture described here represents our current working implementation rather than a finalized
system. Section 3 provides detailed documentation of the execution model and composition
constraints. The orchestrator exposes a single entry point through which all multi-agent work-
flows execute, enforcing isolation constraints that prevent unbounded recursion while enabling
structured parallelism.

The orchestrator architecture comprises three layers. The plugin layer registers a tool that
accepts workflow specifications and manages execution lifecycle. The workflow layer maintains
a registry of named workflows, each defining an iterative coordination pattern with termination

Implementing Agentic Context Engineering 6

conditions. The agent layer consists of specialized workers defined through declarative specifi-
cations that enumerate permitted tools, expected input and output schemas, and side effects
the agent may produce.

2.2 Workflow Execution Model

Workflows execute through a coordinator that runs an iteration loop until completion criteria
are satisfied. In each iteration, the coordinator assesses progress toward the goal, determines
which workers to spawn for the next phase of investigation, and accumulates evidence from
worker results. Workers execute in isolated sessions with access only to their declared tools,
returning structured results that the coordinator incorporates into its assessment.

This model enforces a depth-limited composition constraint as the coordinator may spawn
workers, but workers may not spawn further workers. The depth limit trades some expressive-
ness for predictability, a tradeoff we have found worthwhile in practice. Section 3.3 describes
the enforcement mechanisms that guarantee this constraint.

This approach aligns with patterns documented in recent practitioner literature. As an exam-
ple: Anthropic [Ant25¢] describe a two-agent pattern (initializer and coding agent) for maintain-
ing coherence in long-running tasks; our composition constraint formalizes a similar intuition
as an architectural invariant. A common workflow pattern reserves artifact creation for a des-
ignated finalization phase, though this is a configuration choice rather than an architectural
requirement.

2.3 Context Management Considerations

A central concern in multi-agent architectures is managing the proliferation of context across
spawned sessions. I find it helpful to think in terms of a context economy: not all context
has equal value, and the cost of maintaining context varies depending on where it resides. The
main conversation thread between human and agent is expensive real estate; tokens consumed
there compete with the human’s ability to guide the system and the agent’s ability to retain
task understanding. Worker sessions are cheap by comparison; their context can be discarded
after extracting results.

This economic framing leads to a distinction between two categories of context. The first
comprises context that should be preserved: the human’s conversation history, accumulated
understanding of the task, and decisions made during planning. This context is expensive to
reconstruct and represents the collaborative state between human and system. Disrupting this
context forces the human to re-establish shared understanding, which we consider unacceptable
overhead.

The second category comprises context that can be discarded: an agent’s internal reasoning
during execution. When a worker analyzes code or searches for patterns, its chain of thought is
an implementation detail. Only the worker’s output matters for composition; the intermediate
reasoning need not persist beyond the worker’s session.

This distinction motivates our architectural separation. Workers exist not merely to paral-
lelize computation but to protect the main conversation from being overwhelmed by interme-
diate reasoning. By executing in isolated sessions, workers can engage in extensive exploration
without consuming attention capacity in the coordinator’s context. The coordinator receives
only structured results, which it can incorporate selectively.

Anthropic [Ant25b] articulate a related insight: effective context engineering involves deciding
what information to load and when, rather than accumulating everything into a single prompt.
Our session isolation implements this principle at the architectural level, with workers per-
forming focused retrieval and the coordinator maintaining selective attention on task-relevant
outcomes.

Implementing Agentic Context Engineering 7

2.4 Task Organization

The orchestrator persists artifacts according to a structured directory convention that separates
human-facing documents from machine-managed state. Each task occupies a directory named
by date and description, following the pattern YYYY-MM-DD-task-name (Figure 2). Human-
facing artifacts reside at the task root: implementation plans that specify phased work with
verification criteria, observation logs that capture research findings and implementation notes,
and handoff documents that enable session transfer. Machine-managed state occupies a runs
subdirectory, with each workflow execution receiving an isolated directory containing coordina-
tor state sufficient to resume interrupted workflows, worker outputs organized by iteration, and
telemetry data for post-hoc analysis.

Session-scoped memory provides a complementary storage layer for transient state that spans
multiple tool invocations within a single session but does not persist across sessions. Each session
maintains an isolated directory under a .sessions hierarchy, containing attribution records
that track which playbook patterns were consulted, feedback entries that capture effectiveness
assessments, and curation queues that accumulate proposed playbook updates. This separation
enables the playbook system to track pattern usage during a session while deferring permanent
updates to dedicated reflection phases, as described in subsequent sections.

ace/tasks/YYYY-MM-DD-task-name/
|-- plan.md

| -- research-{topic}.md

| -- observations-planning.md

| -- observations-implementation.md

| -- handoffs/
| “-- YYYY-MM-DD_HH-MM-SS_description.md
“-- runs/
“-- NNN-workflow-timestamp-hash/
|-- state/

“-- worker-outputs/

Figure 2: Task directory structure. Human artifacts (plan.md, research-*.md, observations-
*.md, handoffs/) are separated from machine-managed state (runs/). Multiple re-
search documents support iterative exploration via /iterate_research; the plan
supports refinement via /iterate_plan.

2.5 Relationship to Prior Work

Our implementation synthesizes insights from several sources. The core Generator-Reflector-
Curator architecture derives from Zhang et al. [Zha+25], who introduced the ACE framework
and demonstrated its effectiveness on agent benchmarks. Their central insight, that language
models benefit from comprehensive, evolving playbooks rather than concise prompts, motivates
our design throughout.

For task organization, we adopt the phased artifact structure introduced by Horthy and Hu-
manLayer [HH25]. The research phase produces observation documents that capture findings
without prescribing solutions. The planning phase consumes these observations to produce
implementation plans with explicit phase boundaries and verification criteria. The implemen-
tation phase executes plans incrementally, with verification gates between phases. We extend
this three-phase workflow with a reflection phase in which the system analyzes task outcomes
to evolve its playbook, closing the feedback loop that distinguishes ACE from static context
approaches.

Implementing Agentic Context Engineering 8

The architectural patterns we employ also align with guidance from Anthropic [Ant25b;
Ant25c], who describe mode separation, artifact-based handoffs, and just-in-time context load-
ing as effective strategies for long-running agent systems. Our contribution lies in integrating
these patterns with the ACE learning loop and providing the session isolation mechanisms that
enable concurrent operation.

3 Orchestrator Architecture

The preceding section established the high-level context in which our implementation operates.
This section provides detailed documentation of the orchestrator architecture, with sufficient
depth that a technically sophisticated reader could reimplement the core patterns. We describe
the execution model that determines how workflows run, the coordinator pattern that enables
iterative investigation, the composition constraints that bound complexity, the prompt compo-
sition architecture that enables workflow reuse, and the permission model that enforces security
boundaries.

3.1 Execution Model

The orchestrator supports three execution modes, each suited to different task characteristics.
Understanding these modes is essential for designing workflows that balance capability against
complexity.

Agentic mode is used for complex, iterative workflows requiring multiple rounds of investi-
gation. A coordinator session manages an iteration loop, spawning workers dynamically based
on its assessment of progress toward the goal. State accumulates across iterations: progress
items track what has been discovered, remaining items track what still needs investigation, and
worker outputs provide the evidence base for decisions. The coordinator decides when to termi-
nate based on either achieving the goal or exhausting a configured iteration budget. Research
workflows, reflection workflows, and complex analysis tasks use this mode.

Single-agent mode is used for focused, single-purpose execution. The agent runs directly
with access to its declared tools, completing after a single execution cycle. Critically, agents in
this mode cannot spawn further agents, this constraint is enforced architecturally, as described
in Section 3.3. Workers spawned by coordinators in agentic mode execute in single-agent mode,
ensuring the two-level composition rule holds. Codebase analysis, pattern finding, and file
location tasks use this mode.

Workflow mode is used for predefined multi-step sequences where the structure is fixed
rather than dynamically determined. FEach step may internally use single-agent or agentic
mode, but the overall sequence follows a predetermined plan. This mode is less common in our
current implementation, but is where we see the potential for achieving very complex tasks. The
main thing standing in the way of building out long workflows is to be able to reason formally
about such workflows. This is also why we think typed agents with side effects is a formalism
that would be valuable to get right.

The execution mode determines the loop type. There are two fundamental patterns: the
trivial loop and the coordinator loop. A trivial loop spawns a single worker that exe-
cutes to completion and returns its result; this is what single-agent mode uses. A coordinator
loop spawns multiple workers across iterations, accumulating state progressively; this is what
agentic mode uses. The coordinator loop is the more complex pattern and warrants detailed
examination.

3.2 The Coordinator Pattern

The coordinator pattern implements agentic mode through an iteration loop that progressively
builds understanding of a problem space. Figure 3 illustrates the lifecycle.

Implementing Agentic Context Engineering 9

-

[Receive goal

iteration

{ Assess progress }—

| S

[Select workers

yes

{ Accumulate state

[Continue?]7

no

-

[Final iteration

{ Create artifacts]

Figure 3: The coordinator loop lifecycle. Each iteration assesses progress toward the goal, selects
and spawns workers in parallel, accumulates their results into coordinator state, and
decides whether to continue or finalize. The final iteration operates with expanded
permissions to create persistent artifacts.

The coordinator begins by receiving a goal (typed input) and configuration specifying avail-
able workers, maximum iterations, and termination criteria. In each iteration, it assesses
progress by examining accumulated evidence from prior iterations, determines which workers
to spawn based on remaining gaps in understanding, and dispatches those workers in parallel.
Workers execute in isolated sessions, returning structured results that the coordinator incorpo-
rates into its state.

State accumulation follows specific semantics. Progress items extend across iterations with
deduplication: if multiple workers report the same finding, it appears once in the progress list.
Remaining items are replaced each iteration, reflecting the coordinator’s current assessment of
what still needs investigation. Worker outputs are appended with metadata including iteration
number, worker name, and a semantic output key that enables later reference.

Worker results follow a structured output format using TOON (Token-Oriented Object Nota-
tion) [TOO25], a compact serialization format designed for LLM contexts. The TOON specifica-
tion reports approximately 40% token reduction compared to JSON while maintaining explicit
schema information. Rather than returning free-form text that requires parsing, workers re-
turn typed objects with explicit schemas defined in their agent specifications. TOON’s explicit
length markers and field headers provide guardrails that improve parsing reliability in multi-
agent communication. The coordinator incorporates these results programmatically, selecting
relevant fields and transforming data as needed. This structured approach reduces ambiguity

Implementing Agentic Context Engineering 10

and enables what we might call a primordial form of typed agents: agents whose inputs and out-
puts conform to declared schemas, enabling compositional reasoning about workflow behavior.
We return to this observation when discussing the connection to algebraic effects in Section 3.5.

The coordinator decides whether to continue based on two factors: whether the goal appears
achieved (signaled through a should_continue field in its response), and whether the iteration
budget is exhausted. When either condition triggers termination, the workflow enters a final
iteration phase.

The final iteration differs from regular iterations in its purpose and typical configuration.
Regular iterations focus on investigation and state accumulation, with permissions configured
according to workflow needs. The final iteration is designated for producing outputs: it always
returns a typed result conforming to the workflow’s declared output schema, and may addition-
ally produce side effects such as persistent artifacts written to the file system. When artifact
creation is expected, the final iteration enables Write and Edit tools; when only structured data
is needed, no additional permissions are required beyond what the schema return provides.

3.3 Composition Constraints

A central architectural decision is the two-level composition rule, which states that coordi-
nators may spawn workers, but workers may not spawn further workers. This constraint bounds
the depth of agent nesting to exactly one level.

Coordinator — [Worker;, Workers, . . ., Worker,,] (1)

We adopted this constraint based on reasoning about the consequences of unbounded nesting.
If workers could spawn sub-workers, execution traces would become exponentially complex, re-
source consumption would become unpredictable, and reasoning about where results originated
would become difficult. The depth limit trades some theoretical expressiveness for substantial
practical benefits such as predictable resource consumption, traceable execution, and bounded
complexity.

This constraint is not unique to our implementation. Claude Code [Ant25a], Anthropic’s
CLI tool, enforces an identical restriction: agents invoked via the Task tool cannot recursively
spawn other agents through the Task tool. The convergence on this pattern across independent
implementations suggests it reflects a genuine architectural insight rather than an arbitrary
choice.

The constraint is enforced through three mechanisms. First, a registry tracks which sessions
are workers. When the orchestrator spawns a worker, it records the worker’s session identifier
in a set. Second, a tool-use hook intercepts attempts to invoke the orchestrator from within a
session. If the session is registered as a worker, the invocation is blocked with an error message
explaining the constraint. Third, the permission system provides a safety net: even if the first
two mechanisms failed, worker sessions lack the permissions required to spawn further agents.

This architecture aligns with patterns observed in production agent systems. Anthropic
[Ant25¢c] describe a two-agent pattern for long-running tasks; our composition constraint for-
malizes a similar intuition as an architectural invariant rather than a convention.

3.4 Prompt Composition

Workflows are constructed through a three-layer prompt composition architecture that separates
concerns and enables reuse.

Layer 1 (Behavior) specifies how to coordinate. Behavior prompts define iteration patterns,
progress assessment strategies, worker selection heuristics, and termination criteria. These
prompts are stored in a behaviors/ directory and are agnostic to the specific task domain. A
coordinator behavior, for example, explains how to assess whether progress is being made and
how to select which workers to spawn next.

Implementing Agentic Context Engineering 11

Layer 2 (Strategy) specifies what approach to take. Strategy prompts provide domain-
specific guidance: what to look for, how to structure investigation, what quality criteria to apply.
These prompts are stored in a strategies/ directory. A research strategy, for example, explains
how to decompose a question into sub-questions and what constitutes sufficient evidence.

Layer 3 (Runtime) specifies this particular invocation. Runtime context includes the avail-
able workers for this workflow, the goal or task description, maximum iterations, and any custom
instructions. This layer is constructed dynamically at invocation time.

The final prompt is composed by concatenating these layers:

Behavior (coordinator.md)
+ Strategy(research.md)
+ Runtime (workers=[analyzer, locator], max_iter=5, goal="...")
-> Final coordinator prompt

This separation yields several benefits. Behaviors are reusable across strategies: the same co-
ordinator behavior works for research, reflection, and analysis workflows. Strategies are reusable
across invocations: the same research strategy applies regardless of the specific question. Adding
a new workflow often requires only combining existing layers with appropriate runtime context,
rather than writing new prompts from scratch.

3.5 Permission Model

The permission model translates declarative effect specifications into concrete operational per-
missions, implementing a defense-in-depth approach to security.

Agents declare the effects they require through a structured specification in their definition
files:

declaredEffects:
- type: file.read
pathPattern: "*x/x"
- type: file.create
pathPattern: "ace/tasks/${taskDirl}/*x"
- type: bash.execute
commands: ["git status", "git log"]

Effect types include file.read, file.create, file.modify, and bash.execute. Path pat-
terns support variable substitution, allowing specifications like ${taskDir} that resolve at run-
time based on invocation context.

The permission generator translates these declarations into operational permissions. We
separate this into five parts with later parts overriding earlier ones (last-match-wins):

1. Wildcard deny: The base layer denies all operations by default. This ensures that any
operation not explicitly permitted is blocked.

2. Safe read patterns: For agents declaring file.read effects, standard read operations
(cat, grep, 1s) are permitted on paths matching the declared patterns.

3. Declared commands: Commands explicitly listed in bash.execute effects are permit-
ted. This layer enables specific operations the agent requires for its task.

4. Secret denials: Approximately 700 combinatorial patterns block access to credentials,
API keys, and other sensitive data. These patterns override any permissions granted by
earlier layers.

5. Dangerous operation blocks: Operations like rm -rf, sudo, and other destructive
commands are unconditionally denied regardless of any other declarations.

Implementing Agentic Context Engineering 12

Permissions are configured per workflow and may differ between regular and final iterations. A
common pattern reserves write operations for the final iteration, when accumulated investigation
results are synthesized into artifacts. However, this is a configuration choice rather than an
architectural constraint and workflows may grant write access during regular iterations if their
task requires it.

Now, the remainder of this section is me thinking out loud. I want to sketch a way of thinking
about agent systems that has guided my design decisions, even though I do not know whether it
can be made rigorous. The connections I draw to programming language theory may not survive
careful scrutiny, but they have proven useful in practice (the Lie-Stgrmer Center infrastructure
being one concrete example where this mental model shaped architectural choices that worked
well). T include this sketch in the hope that readers with relevant expertise might see something
worth developing, or alternatively might identify where my intuitions go astray.

3.5.1 Tools as Effects, Implementations as Handlers

The starting point is algebraic effect systems as developed in programming language research.
This field has a roughly twenty-five year history that I find illuminating, though I am uncertain
whether the analogy I draw actually holds up under scrutiny.

The theoretical foundations were established by Plotkin and Power in the early 2000s [PP03],
who showed that computational effects (state, exceptions, I/O, nondeterminism) could be mod-
eled as algebraic operations with a precise categorical semantics. Their insight was that effects
are not ad-hoc language features but instances of a general mathematical structure.

The practical breakthrough came when Plotkin and Pretnar introduced effect handlers in
2009 [PP13]. Handlers provide a way to give meaning to effects: an operation like read or
throw is abstract until a handler specifies what it does. Different handlers can interpret the
same operation differently, enabling the separation of interface from implementation that I find
useful for thinking about tools.

When we define a tool like playbook_search, we provide two things: a description that
the agent sees (“search for patterns matching keywords”), and an implementation in code that
executes when the tool is invoked. The description resembles an operation signature; the imple-
mentation resembles a handler. Different handlers could interpret the same operation differently:
a test handler returns mock data, a production handler queries the actual playbook, a caching
handler adds memoization.

A deeper connection—though I am less confident about this one—involves what Plotkin and
Power [PP08] call comodels. In their framework, a model captures the algebraic structure of
computation (the operations an agent can invoke), while a comodel captures the coalgebraic
structure of the external environment (the “hardware” that responds to those operations). The
file system, the shell, and external APIs would all be comodels in this view. Agent reasoning is
internal computation; tool invocation is interaction with the external world. The tensoring of
model with comodel produces actual execution.

I find this framing appealing because it separates concerns cleanly. The agent’s reasoning is
one thing, the external environment is another, and the handler mediates between them. But
I do not know whether this is the right way to think about LLM tool-calling, or whether I am
forcing a square peg into a round hole.

3.5.2 Agent Effect Declarations

Each agent declares effects it may perform:

codebase-analyzer
declaredEffects:
- file.read: "xx*/x"
- playbook.search

Implementing Agentic Context Engineering 13

reflector
declaredEffects:
- file.read: "*xx/x"
- playbook.update
- playbook.increment

These declarations form an effect signature for the agent, i.e., what operations it might invoke
during execution.

3.5.3 Effect Composition Through Workflows

Here is where I think something interesting happens, though I cannot yet formalize it precisely.
When a workflow uses multiple agents, the workflow’s potential effects are derived from the
agents’ declarations. Intuitively:

Effects(workflow) = U DeclaredEffects(agent)

agenteworkflow

A workflow that spawns both the analyzer and reflector above would have potential effects
{file.read, playbook.search, playbook.update, playbook.increment}.

In programming language research, this kind of composition is handled through row polymor-
phism [Leild]. An effect row like (read | write | p) specifies known effects while leaving the row
variable p open for extension. Functions can be polymorphic over effect rows, working with any
computation that includes certain effects regardless of what other effects might be present.

I am not sure whether this is the right model for agent composition. Our agents do not
have the kind of precise type signatures that would enable row-polymorphic inference. But the
intuition feels similar: a workflow that spawns agents inherits their effects, and handlers can be
polymorphic over which additional effects might be present.

The key insight, assuming this analogy holds, is that how you handle effects determines what
the workflow actually does. Consider file.write:

e Production handler: Actually writes to disk

e Dry-run handler: Logs what would be written, does not write
o Test handler: Writes to temporary directory

e Sandboxed handler: Writes to isolated environment

You have the same workflow and the same agents but with different handlers and consequently
completely different behavior. This is the polymorphism that algebraic effects provide, and
possibly the polymorphism that our permission system provides (though I have not proven the
correspondence).

3.5.4 Toward Typed Agents

If this could be made rigorous, agent types might look something like:
Agent(E, I, 0)

where E is the set of declared effects, I is the input schema, and O is the output schema.
Spawning an agent would produce a computation with those effects:

spawn : Agent(E,I,0) — I — Computation(E, O)
Workflow composition would propagate effects:
do x < spawn(agent,, req;) in -- Computation<E,, ...>

do y < spawn(agentp, reqs) in -- Computation<Eg, ...>
return combine(x, y) -- Computation<E4 U Ep, ...>

Implementing Agentic Context Engineering 14

To run the workflow, you would provide handlers for all the effects. Missing a handler would
be a type error.

3.5.5 The Two-Level Rule as Effect Restriction

The Two-Level composition rule has a natural interpretation in this view. spawn is only available
at the workflow level. Agents cannot declare spawn as an effect.

Without this restriction, computing an agent’s effect set requires knowing the effects of every
agent it might spawn, which in turn requires knowing the effects of agents those agents might
spawn, and so on. If agent A can spawn agent B which can spawn agent C, then:

Effects(A) D Effects(B) D Effects(C) D - --

Static effect inference would need to chase this chain to a fixed point. With cycles (A spawns
B spawns A), the analysis may not terminate. The Two-Level Rule sidesteps this as agents
cannot spawn agents, so effect sets are flat and statically determinable.

3.5.6 What | Cannot Yet Formalize

However, I think it is important to be honest about where I do not think this analogy works.

The coordinator’s role. The coordinator decides which agents to spawn at runtime. Does
this affect typing? If the coordinator might spawn agent A or might not, is the effect conditional?
How does dynamic selection interact with static effect typing?

Equations. Algebraic theories have equations that operations satisfy. Do our effects have
equations? Is file.read idempotent? Does playbook.increment commute with itself? I do
not know what equations, if any, should hold.

Continuations. In algebraic effect systems, continuations are syntactically determined.
In agent execution, “what happens next” is generated by LLM reasoning. I suggested that
workflows provide static continuation structure while agents are atomic from the workflow’s
view. But this is hand-waving; I do not have a precise semantics.

3.5.7 Why I Include This Sketch

Despite these gaps, thinking in these terms has guided concrete design decisions. The Two-Level
Rule, the effect declaration schema, the separation between tool descriptions and implementa-
tions, the workflow structure. It seems to me like these designs have worked well in practice.

As a concrete example, I built the infrastructure for the Lie-Stgrmer Center while developing
and using these patterns. The methodology structured work into phased workflows with verifi-
cation gates. The effect declarations helped reason about what each agent could do. Whether
the underlying theory is sound, I cannot say, but the practical results suggest the mental model
captures something real about how to structure multi-agent systems.

I should note that I have not found any existing research applying algebraic effect theory
to LLM tool-calling or multi-agent orchestration. The effect systems literature focuses on tra-
ditional programming languages where “computation” has precise semantics. Whether the
framework extends to systems where “computation” involves probabilistic text generation is, as
far as I can tell, an open question, which is either an opportunity or a warning sign.

If someone with expertise in effect systems sees a way to make this rigorous—or, equally
valuable, sees why this analogy is fundamentally misguided—I would be very interested to
learn what I am getting right and what I am getting wrong.

Implementing Agentic Context Engineering 15

4 Theoretical Foundation

This section establishes the theoretical foundations that motivate our architectural decisions.
Recent work on Recursive Language Models [ZKK25] provides a framework for understanding
why the ACE approach succeeds and how to extend it for concurrent operation.

4.1 The Environment Paradigm

Traditional approaches to context adaptation embed accumulated knowledge directly in the
prompt, creating a monolithic input that grows linearly with the amount of stored information.
This approach faces fundamental scaling limitations where as contexts grow, they consume an
increasing fraction of the model’s attention capacity, and the relevance of any particular piece
of information to the current task diminishes.

Recent work on recursive language models demonstrates an alternative paradigm [ZKK25].
Rather than feeding long prompts directly into the neural network, these systems treat prompts
as part of an external environment with which the model can symbolically interact. The system
exposes the same interface (string in, string out) while internally treating context as a variable
that can be queried, filtered, and decomposed programmatically.

Principle 4.1 (Context as Environment Variable). Store context externally and provide tools
for selective access rather than concatenating context into the prompt. The model decides what
to retrieve based on the task at hand, avoiding the cognitive overhead of processing irrelevant
information.

This paradigm yields substantial benefits documented in the RLM paper. Context scale
extends two orders of magnitude beyond the native context window. Inference cost remains
comparable to or cheaper than base model calls, since only relevant portions of context are re-
trieved. Performance improves significantly on information-dense tasks where selective attention
matters most.

Our understanding is that this paradigm describes how existing coding agents already operate
in practice. Tools like Cursor, Claude Code, and similar assistants provide file system access,
code search, and retrieval capabilities as external tools rather than embedding entire codebases
in prompts. We do not see a fundamental difference between this established practice and
the RLM formalization; the paper’s contribution, as we interpret it, is formalizing why coding
agents are able to handle large codebases effectively through a curated set of tools.

4.2 Implications for Playbook Design

Principle 4.1 has direct implications for how we structure the playbook system. Rather than
injecting the entire playbook into each prompt, which would suffer from the scaling limitations
described above, we expose the playbook through a query interface. The Generator deter-
mines which patterns to retrieve based on task requirements, mirroring the code-based filtering
patterns observed in recursive language models.

This design also motivates the separation between persistent storage and session-local ev-
idence trails. The playbook itself is a persistent artifact that evolves across sessions. The
evidence trail, by contrast, tracks ephemeral state, which patterns have been applied in the
current session, what feedback has been collected, what curation operations are pending. This
separation enables concurrent sessions to operate independently while sharing the same under-
lying playbook, and provides the audit trail that the Curator requires during reflection.

4.3 Session Isolation and Deferred Mutation

Concurrent access to shared mutable state presents a fundamental challenge. As established
in Proposition 5.12, when n sessions attempt simultaneous updates under a concurrent trace,

Implementing Agentic Context Engineering 16

exactly n—1 updates are lost. The categorical analysis of Section 5.3 shows this is not merely an
implementation defect but a structural consequence of the read-modify-write execution model.

Our solution draws on the principle of event sourcing from distributed systems. Rather
than mutating state directly, sessions append operations to a log. The playbook is updated
only during dedicated curation phases, when a single Curator agent processes the accumulated
logs and applies changes atomically. This deferred curation mechanism ensures consistency
(Proposition 5.13) without requiring coordination between concurrent sessions.

5 Design Evolution

This section traces the evolution of our playbook implementation from an initial agent-mediated
design through to the current native tool architecture. We present this evolution as a case study
in how practical experience and theoretical insights combine to drive architectural refinement
in agentic systems.

5.1 The Previous Implementation

In our previous implementation, we employed the orchestrator’s agent-spawning capability to
mediate all playbook interactions. The design followed what seemed like a natural pattern
where you define a specialized agent for playbook search, and spawn it whenever the system
required pattern lookup.

A hook registered on the user prompt submission event intercepted each user message before
processing. The hook implementation performed initial filtering to exclude trivial inputs, then
injected an orchestration instruction directing the main agent to spawn a specialized playbook
searcher.

The playbook searcher agent operated in an isolated context with access to four tools: grep
for pattern matching, read for file content access, directory listing for structure discovery, and
search for full-text queries. Upon receiving a task description and optional domain hints, the
agent would enumerate available skills, search their descriptions for relevant keywords, query
playbook files for pattern entries matching the specified domains, categorize discovered patterns
by effectiveness thresholds, and return structured results to the calling context.

The playbook corpus comprised multiple domain-specific files covering methodology patterns,
language-specific heuristics, repository organization guidelines, debugging strategies, and work-
flow patterns. Each pattern entry followed a structured format encoding an identifier, effective-
ness counters, and descriptive content.

5.2 Limitations Observed in Practice

Extended deployment revealed several fundamental limitations in the agent-mediated approach.
The most immediate was latency as spawning a dedicated agent session, executing the re-
trieval process, and returning results introduced observable delays that disrupted the interactive
rhythm of task execution, particularly for sessions requiring multiple playbook consultations.

Attribution was technically possible but imprecise. The /implement command prompted the
main agent to maintain an implementation log recording which patterns it consulted. The Re-
flector subsequently analyzed this log to determine attribution. However, the agent-mediated
retrieval meant patterns were often retrieved speculatively rather than in direct response to spe-
cific problems, making it difficult to establish causal connections between pattern consultation
and successful outcomes.

Although results from the playbook searcher used structured TOON output, a more funda-
mental problem emerged, namely relevance. The agent retrieved patterns based on its own
understanding of the task, which often diverged from the main thread’s actual needs. Without
direct access to the full task context, the agent frequently returned patterns that were topically

Implementing Agentic Context Engineering 17

related but not practically useful. This observation, while anecdotal, motivated the shift toward
direct tool access where the main thread queries patterns with full context available.

Concurrent sessions presented a theoretical coordination challenge. While not encountered in
practice during our deployment, the architecture provided no mechanism for detecting or resolv-
ing conflicts should multiple sessions attempt simultaneous playbook updates. This theoretical
limitation motivated the analysis in the following section.

5.3 Theoretical Analysis of Concurrent Access

To be completely clear, this subsection is entirely unnecessary. The concurrent update problem
could be stated in three sentences and solved with a mutex. What follows instead is a categorical
treatment involving monoid actions, translation categories, and missing pushouts, the sort of
elaborate machinery one deploys when a simple solution would be insufficiently satisfying. I
offer no defense beyond an admission that I find it difficult to resist the siren call of abstract
nonsense. Readers who value their time (and sanity) may skip ahead; those who remain do so
at their own risk.

We formalize the concurrent access problem to clarify why the original architecture was
fundamentally inadequate. We work in two categories, Set (sets and functions) for state spaces
and Mon (monoids and homomorphisms) for update algebras.

Definition 5.1 (The Value Monoid). Let V' =N x N x ¥* be the set of pattern data (helpful
count, harmful count, content). Define V|, = V + {L} by adjoining a distinguished element
representing “undefined.” The value monoid is M = End(V), the monoid of endomorphisms
of V| under composition. This is an object in Mon. The product structure of V induces
distinguished subsets, namely counter operations acting on the first two components and
content operations acting on the third.

Definition 5.2 (The Update Monoid). Let I be the set of pattern identifiers. In Mon, we
form the restricted direct product [nLa26e|:

U=Pum = f[M

iel el

Both notations appear in the literature [nLa26c]: € emphasizes the “direct sum” character
(coproduct-like in additive categories), while H/ emphasizes the restriction on the product.
This is the submonoid of the full product [[;.; M consisting of families (f;);cr where f; =idy,
for all but finitely many i. Explicitly, an element u € U is a pair (S, p,) where:

e S, C I is finite (the support)
oy Sy — M assigns to each i € S, an endomorphism

Composition in U is pointwise: (v o) has support S, U S, with

v;ou; ifi€eS,N.S,
U lf’LESu\SU
Vs ifiGSU\Su

id otherwise

(vouw); =

The identity is (0,!). Think of updates as patches: they specify only what changes, with
implicit identity elsewhere.

Implementing Agentic Context Engineering 18

Definition 5.3 (The State Space). The state space is the restricted product (or weak
direct product):

/
P=]]VL={P:I— V. |P =L forall but finitely many i}
el
A state P € P assigns values to finitely many identifiers and L elsewhere. We write dom(P) =
{i € I: P, # L} for the finite set of defined patterns.
This mirrors the finite support constraint on updates: both states and updates are “sparse”

structures. A playbook with infinitely many defined patterns would require infinite memory;
the restricted product captures exactly the computationally realizable states.

Definition 5.4 (The Action). The update monoid U acts on the state space P via a monoid
homomorphism [nLa26a] « : Y — Endget(P) defined by:

pu(i)(P;) if i€ Sy

P, otherwise

a(u)(P)i = {

This is a left action: a(vou) = a(v)oa(u) and a(idy) = idp. We write u(P) for a(u)(P) when
the action is clear.

The action is well-defined on the restricted products: if P has finite support dom(P) and u
has finite support S, then u(P) has support contained in dom(P) U S,,, which is finite.

Definition 5.5 (The State Category). The action induces a category S, the action category
[nLa26b]:
Objects: P e P

Morphisms: Homg(P,Q) ={uv el : u(P) = Q}
Composition: inherited from U
Identity: idp =idy
A morphism u : P — @ witnesses that u transforms P into (). Sequential execution corresponds
to composition of morphisms.

P—*5Q—""+R & wvou:P—R

Definition 5.6 (Commuting Updates). Updates u,v € U commute if uov = vou in U.
Equivalently, for any state P, the following square commutes in S:

P = u(P)
q{ v
P)=

v(P) —— (vou)(

wov)(P)

By the direct sum structure of U, commutativity reduces to the overlap: v and v commute iff
u; ov; =v;ou; in M for all i € S, NS,. Disjoint support (S, NS, = () implies commutativity
trivially.

Remark 5.7 (Commutativity in the Value Monoid). Not all elements of M = End (V) commute.
The product structure V =N x N x ¥* induces a decomposition.

o Counter operations incy, inc, (incrementing the first and second components respectively)
generate an abelian submonoid; they commute with each other and with content opera-
tions.

Implementing Agentic Context Engineering 19

» Content operations sets (mapping (h,r, ¢) to (h,r, s)) satisfy the left-zero law, setsoset; =
sets. They do not commute with each other unless s = t.

Consequently, two updates u, v € U with S,NS, = {i} may or may not commute depending on u;
and v;. Counter-counter and counter-content pairs commute; content-content pairs do not. This
parallels the CRDT observation that counter increments commute intrinsically, whereas register
writes require auxiliary ordering (e.g., timestamps in LWW-Register) to achieve deterministic
conflict resolution [Sha+11]. Our serialization through the Curator serves the same function,
imposing a total order on inherently non-commutative operations.

Definition 5.8 (Execution Model). Let (7, <) be a totally ordered set (the time domain). An
execution trace for sessions {1,...,n} on initial state Py is a tuple (77, 7{",..., 75, 7%) € 2"
where 7] < 72 for each session s (each session reads before it writes).

Session s with update us € U operates as follows:

o At time 77: read the current state, call it P(*)
« Compute u,(P®) (offline, instantaneous)

o At time 7%: atomically replace the state with wu,(P())

An execution is concurrent if 7] < 7Y for all s # s': every read completes before any write
begins. Under this assumption, all sessions read the same initial state: P = P, for all s.

Proposition 5.9 (Lost Update in Concurrent Writes). Let u,v € U be updates executed by
sessions 1,2 with a concurrent trace (17, 7(",75,75") from initial state Py. The execution yields
a span in S rather than a composable path:

SN
u(Pp) v(Py)

Atomic file replacement selects one leg: the final state is u(Py) if 7{* > 137, or v(Py) if 5" > 7{°,
not the intended composition (v owu)(Fp).

Proof. By the concurrent trace assumption, 7{ < 73" and 75 < 7;°. Both reads occur before
either write, so both sessions observe Py: session 1 computes u(Pp), session 2 computes v(F).
Sequential execution would form a composable path Py = u(Py) = (vou)(Pp), but concurrent
execution produces the span instead. Atomic replacement implements last-writer-wins: the
final state is u(Py) or v(FPp) depending on which write occurs later, with the earlier write’s
contribution discarded. O

Remark 5.10 (Categorical Interpretation). The span admits no canonical completion to a com-
mutative square within the execution model. Whether a merge exists depends on what the
updates do:

o If u and v commute in U (e.g., both are counter operations, or have disjoint support), a
pushout exists but the execution model cannot compute it.

o If u and v do not commute (e.g., both modify the same content field), no pushout exists.
Any state @ can complete the diagram via constant maps, but states with different content
are not isomorphic in §. Pushouts are unique up to isomorphism; infinitely many non-
isomorphic completions means none is universal.

In the second case, information loss is not an operational accident but an algebraic necessity:
S provides no canonical way to select among “Use JWT tokens,” “Use session cookies,” or any
other content.

Implementing Agentic Context Engineering 20

Remark 5.11 (The Missing Pushout). When supports are disjoint (S, N S, = (), a canonical
merge exists in U: define u U v = (S, U Sy, 1) where 1) restricts to ¢, on S, and to ¢, on S,.
This yields a pushout square [nLa26d] in S:

Po #) U(PQ)

Lk

v(By) —— (uUv)(H)
The pushout (u Ll v)(FPy) incorporates both updates: it equals u(Py) on S, and v(FPp) on Sy,
with these being consistent since the supports are disjoint.

More subtly, a pushout also exists when supports overlap but the component operations
commute. If v and v both increment counters on pattern i, then u; o v; = v; o u;, and the
merge (u U v); = u; ov; is well-defined. The difficulty arises when component operations do
not commute. If u; = set., and v; = set., with ¢; # c2, no algebraic combination yields a
meaningful result. One content string must be discarded.

This distinction matters. Counter conflicts are recoverable (the merge exists, we merely
lack the mechanism to compute it), while content conflicts are irrecoverable (no merge exists
regardless of mechanism). The deferred curation architecture handles both uniformly by seri-
alization, but the outcomes differ. For counters, serialization computes the correct merge; all
increments are preserved. For content, serialization merely imposes a deterministic order on
an inherently lossy operation. The last content update in the Curator’s queue overwrites all
predecessors, just as it would under concurrent writes. Serialization provides predictability, not
preservation. !

However, the read-modify-write execution model provides no mechanism to compute this
pushout. Each session operates in isolation, unaware of concurrent modifications. Even when
the categorical limit exists, the operational semantics cannot construct it. The deferred curation
architecture of Section 6 resolves this by sequentializing updates through a single Curator,
converting the problematic span into a well-defined composition in S.

This analysis establishes that the original architecture, permitting concurrent sessions to read
and write playbook files directly, could not guarantee preservation of all updates. The execution
model produces spans where sequential composition is required.

The two-session case generalizes immediately.

Proposition 5.12 (Race Condition in Direct Updates). Let u,...,u, € U be updates executed
by n sessions with a concurrent trace from initial state Py € P. The final state equals u(Fp)
for some k € {1,...,n}. Ezxactly one session’s update persists; the remaining n — 1 are lost.

Proof. Follows by induction on n with the base case n = 2 being Proposition 5.9. O

5.4 Orchestrator Refinement

The playbook architecture evolved alongside refinements to the orchestrator itself. The orches-
trator always had formal contracts, workflow primitives, and structured composition. What
changed over time was the precision of these mechanisms and the introduction of typed effect
declarations.

In practice, content conflicts are rare. Most playbook updates either create new patterns (mapping L to
(0,0, ¢) for some content ¢) or increment counters on existing patterns. Both cases commute. Concurrent
content updates to the same pattern require two sessions to independently decide that an existing description
needs revision, an uncommon scenario. We have thus deployed restricted direct products, monoid actions,
and categorical pushouts to analyze a conflict that almost never occurs. The reader may draw their own
conclusions about the author’s priorities.

Implementing Agentic Context Engineering 21

The iteration protocol evolved from an implicit status-based termination model to an explicit
continuation signal. In the earlier approach, the coordinator returned a status field (success,
partial, or failure) and accumulated findings and gaps across iterations. Termination occurred
when the status indicated success. This worked but required the coordinator to encode termi-
nation intent within a general-purpose status field, making the protocol somewhat indirect.

The current approach separates concerns. Each iteration returns explicit signals: progress_items
(what was accomplished), remaining_items (what remains), and should_continue (whether
to proceed). A CompletionAssessment structure forces the coordinator to evaluate completion
criteria explicitly before signaling termination. If the assessment contradicts the continuation
signal, the system prompts for clarification with up to three retries before raising an error. This
strictness catches cases where the coordinator might otherwise terminate prematurely due to
ambiguous status encoding.

The introduction of typed effect declarations represented a more substantial change. Pre-
viously, agents declared which tools they could use through a simple boolean map: tools:
{read: true, grep: true, ...}. This controlled tool availability but said nothing about
how those tools would be used.

The declaredEffects system, which we introduced in late 2025, adds structure. Each effect
declaration specifies a typed family and action (such as file.read or external.shell_command),
path patterns with variable substitution, and optional command patterns for bash operations.
The permission generator transforms these declarations into concrete permission rules through
five parts. Dangerous operations are blocked unconditionally, secret patterns denied via combi-
natorial matching, declared commands permitted, safe read patterns enabled for file.read effects,
and a default deny for everything else.

This connects to the algebraic effects sketch in Section 3.5. The declaredEffects field is
the agent’s effect signature. The permission generator is one possible handler for those effects.
Different handlers could interpret the same declarations differently, e.g., a sandboxed handler
might redirect file writes to a temporary directory, a dry-run handler might log operations
without executing them, a test handler might return mock data. The declarations describe
what the agent wants to do; the handler determines what actually happens.

The system currently enforces strict mode in the sense that agents must have declaredEffects
defined, and agents without declarations fail at spawn time. This strictness ensures that ef-
fect composition through workflows, as sketched earlier, has the necessary type information to
reason about what effects a workflow might perform.

Prompt composition also evolved, though this change was more about organization than
capability. The original approach used a single coordinator prompt file. The current approach
separates behavior (how to coordinate), strategy (what approach to use), and runtime context
(this specific invocation) into composable layers. New strategies can be added by dropping
files into a directory, and the same behavior layer works across different strategic approaches.
This follows patterns familiar from shell module composition in Nix, where configuration layers
combine to produce final system state.

These refinements share a common direction where we make implicit structure explicit.
Status-based termination became explicit continuation signals. Tool availability became typed
effect declarations. Monolithic prompts became composable layers. Each change increased the
precision with which the system could reason about what agents do and how workflows com-
pose. Whether this precision enables the formal treatment sketched earlier, I cannot yet say,
but the practical benefits in debugging and extension have been clear.

5.5 Insights from Recursive Language Models

The limitations observed in practice aligned with theoretical predictions from concurrent re-
search on recursive language models. Zhang, Kraska, and Khattab [ZKK25] demonstrate that
systems treating context as an external environment variable rather than a prompt component

Implementing Agentic Context Engineering 22

achieve substantial benefits: context scale extends beyond native limits, inference costs remain
bounded, and selective attention improves performance on information-dense tasks.

This paradigm clarifies a key design choice where playbook patterns should be accessible
via tools rather than injected directly into the system prompt. A common approach embeds
accumulated patterns in configuration files like CLAUDE.md or AGENTS.md, forcing the model to
process all patterns on every invocation regardless of relevance. The environment paradigm
suggests instead that patterns remain in external storage, queryable on demand through tool
interfaces. The agent-mediated approach we originally used was not inconsistent with this
paradigm (agents also interact with the environment), but it introduced unnecessary indirection
when direct tool access suffices.

5.6 The Current Implementation

The current implementation eliminates the agent-mediated approach entirely. Playbook oper-
ations are native tools registered directly with the orchestrator, substantially reducing query
latency. A consolidated playbook file replaces the distributed corpus, simplifying both parsing
and caching.

Session-based evidence tracking provides a principled foundation for curation. Each session
maintains its own storage partition where attribution entries, feedback reports, and curation
queues accumulate without coordination. The playbook itself remains immutable during normal
operation; mutations occur only during dedicated reflection phases when a single Curator agent
processes accumulated evidence atomically.

Proposition 5.13 (Consistency under Deferred Curation). (For those of you who actually read
Section 5.3: welcome back!)

Let uq,...,up € U be updates generated by n sessions, each appending to a session-local queue
Q; (no shared writes). If a single Curator reads all queues and applies updates sequentially from
initial state Py € P, the final state is the composition:

(tn 0 -~ 0ugour)(Fy)
All updates are preserved; mo span is formed.

Proof. During generation, session ¢ appends u; to (); without reading or modifying the playbook
state. Queues are disjoint, so no write conflicts arise. The Curator then operates as a single

sequential process:

ul ug Up,

PO Pl Pn

where P, = up(Px—1). This is a composable path in the state category S, not a span. Each
update observes the result of all preceding updates; the final state P, = (uy o --- o uy)(F)
reflects the full composition. O

Remark 5.14 (What This Does and Does Not Solve). Deferred curation converts spans into
paths, ensuring deterministic outcomes. However, it does not resolve the content string problem
from Remark 5.10. If sessions 1 and 2 both queue content updates to the same pattern—say,
“Use JWT tokens” and “Use session cookies”—the Curator applies them sequentially, and the
later update overwrites the earlier. The choice is now deterministic (queue ordering) rather
than a race, but one session’s content contribution is still discarded.

Counter operations are different. Because increment_helpful and increment_harmful com-
mute in U, sequential application in any order produces the same final counts. If session 1 queues
incy, and session 2 queues incy, the Curator’s path yields +2 regardless of ordering. No infor-
mation is lost. The architecture solves concurrency for counters while merely determinizing the
inherent conflict for content.

Implementing Agentic Context Engineering 23

The hook that previously triggered agent spawning was repurposed to inject periodic re-
minders about available playbook tools, promoting pattern consultation without requiring in-
termediate agent sessions. This guidance mechanism preserves the proactive knowledge retrieval
that motivated the original design while eliminating its architectural limitations.

6 Architecture

The implementation comprises three architectural layers: the playbook store, the session evi-
dence trail, and the tool interface. Each layer addresses a distinct concern while maintaining
clean separation of responsibilities.

6.1 Playbook Store

The playbook store manages the consolidated playbook file and its derived artifacts. The
playbook itself resides at a well-known location in the repository and follows a structured
format that enables efficient parsing and querying.

Each pattern entry consists of three components. An identifier of the form [domain-NNNNNN]
provides a stable reference, where the domain indicates a category (such as methodology,
language-specific patterns, or anti-patterns) and the number is a six-digit identifier that enables
deterministic assignment. Effectiveness counters record how often the pattern was marked as
beneficial or detrimental across prior sessions. The content describes the strategy, heuristic, or
warning.

[api-000023] helpful=31 harmful=2 :: Use UserService.findById() not raw
SQL
[auth-000008] helpful=17 harmful=0 :: JWT tokens require refresh before /

admin routes

An embedding cache stores vector representations of pattern content, enabling semantic simi-
larity queries for deduplication and related pattern discovery. The cache uses a local embedding
model (we use Ollama with nomic-embed-text) to avoid external API dependencies. Embed-
dings are stored in .playbook-cache/embeddings.json, mapping pattern identifiers to their
vector representations.

The deduplication system uses similarity thresholds to guide curation decisions. Patterns with
similarity below 0.85 are considered sufficiently distinct for independent addition. Patterns with
similarity between 0.85 and 0.95 are flagged for potential merging, as they likely represent related
but not identical guidance. Patterns with similarity above 0.95 are considered near-duplicates,
and the system recommends skipping the addition to avoid redundancy.

The cache is derived from the playbook and can be regenerated if corrupted or invalidated
by model changes. Regeneration is triggered automatically when the playbook’s modification
timestamp exceeds the cache timestamp, ensuring consistency without manual intervention.

6.2 Session Evidence Trail

The session evidence trail provides isolated storage for each active session (Figure 4). This
isolation is crucial for enabling concurrent operation: sessions can track pattern usage, collect
feedback, and queue curation operations without coordinating with other sessions or risking
data loss from race conditions.

Each session maintains three categories of evidence in an isolated directory structure:

.sessions/${sessionId}/
|-- session. json
“-- memory/

Implementing Agentic Context Engineering 24

--- -)(Session A } [Session B } -
write write
[NMHLQIA] [NEHLQIB }
query query
read read

[Curator } /reflect

atomic write

h

R e T {: Playbook }- —————————————————

Figure 4: Session isolation architecture. Each session writes to its own memory partition. The
Curator reads from all relevant sessions during reflection and performs a single atomic
write to the playbook.

|-- attribution. json
|-- feedback. json
"-- curation-queue. json

The session. json file stores metadata including the session start time and associated task
context. The memory/ subdirectory contains the evidence trail files.

Attribution records track which patterns the Generator consulted during task execution.
Each entry includes the pattern identifier, a timestamp, and the task context at the time of
consultation. This enables the Reflector to analyze which patterns contributed to outcomes:

{ "patternId": "ace-000017", "timestamp": "...", "taskContext": "..." }

Feedback entries capture explicit assessments of pattern effectiveness. Each entry records
whether the pattern was helpful or harmful, with optional evidence describing the observed
outcome:

{ "patternId": "ace-000017", "helpful": true, "evidence": "...", "
timestamp": "..." }

Curation queue entries accumulate proposed updates for later application. Each entry
specifies an operation (increment, add, or merge), parameters, and the originating session:

{ "operation": "increment", "params": { "id": "ace-000017", "helpful": 1
T,
"timestamp": "...", "sessionId": "..." }

The session architecture directly addresses Proposition 5.12. Since sessions write only to their
own storage partitions, concurrent operation cannot cause lost updates. The playbook remains
immutable during normal operation; mutations occur only during the reflection workflow, when
the Curator processes accumulated queues from relevant sessions.

Implementing Agentic Context Engineering 25

6.3 Tool Interface

The tool interface exposes playbook functionality to the Generator through thirteen operations
organized into five categories. This design implements Principle 4.1: rather than embedding
the full playbook in prompts, the Generator queries for relevant patterns as needed.

Query tools provide read-only access to playbook content:

playbook_search: Returns patterns matching keywords, sorted by effectiveness score.
Accepts domain filters and result limits.

playbook_get: Fetches specific patterns by identifier, returning full content including
effectiveness counters.

playbook_list: Enumerates all patterns in a specified domain, useful for browsing avail-
able guidance in a category.

playbook_proven: Returns patterns with helpful count above a configurable threshold,
surfacing well-validated guidance.

playbook_warnings: Surfaces anti-patterns where harmful feedback exceeds helpful, alert-
ing the Generator to known pitfalls.

Attribution tools enable the Generator to record pattern usage:

playbook_applied: Records that a pattern was consulted during task execution, creating
an attribution entry in session memory.

playbook_set_task: Links the current session to a task directory, establishing correlation
context for later analysis by the Reflector.

Feedback tools capture effectiveness assessments:

playbook_feedback: Records whether a pattern was helpful or harmful for the current
task, with optional evidence describing the outcome.

Curation tools queue updates rather than applying them directly:

playbook_increment: Queues an increment to a pattern’s helpful or harmful counter
based on observed effectiveness.

playbook_add: Queues a new pattern for addition, specifying domain, identifier, and
content.

playbook_merge: Queues a recommendation to merge two similar patterns, consolidating
redundant guidance.

playbook_apply_curation: Processes the merged curation queue and applies changes
atomically to the playbook. This tool is restricted to the Curator agent during reflection
workflows.

Deduplication tools prevent redundant pattern accumulation:

playbook_dedupe: Queries the embedding cache for semantically similar patterns before
adding new content. Returns similarity scores and recommendations: add if sufficiently
distinct, merge if similar, or skip if near-duplicate.

This tool organization reflects the ACE architecture’s separation of concerns. Query and
attribution tools are available to all agents, enabling pattern consultation and usage tracking
during normal operation. Feedback tools capture the evidence trail that informs later curation
decisions. Curation tools are primarily used during reflection, with playbook_apply_curation
restricted to ensure atomic updates.

Implementing Agentic Context Engineering 26

6.4 Agent Definition Schema

Agents in the orchestrator are defined through markdown files with YAML frontmatter, com-
bining declarative configuration with natural language system prompts. This format enables
version-controlled agent definitions that can evolve alongside the codebase.

name: codebase-analyzer
description: Analyzes codebase implementation details
model: anthropic/claude-sonnet-4-5
tools:
read: true
grep: true
glob: true
1s: true
declaredEffects:
- id: read-files
effectType:
family: file
action: read
pathPattern: "x**/x"
description: "Read any file for analysis"
contract:
input:
schema:
type: object
properties:
files_to_analyze: { type: string }
analysis_focus: { type: string }
required: [files_to_analyze, analysis_focus]
output:
schema:
type: object
properties:
status: { type: string, enum: [success, failure] }
summary: { type: string, x-extract: fact }
analysis: { type: array, x-extract: description }
required: [status, summary]

You are a codebase analyzer...

The frontmatter specifies several components:

Basic metadata: The name field provides a unique identifier for workflow configurations.
The description provides human-readable context that coordinators use when selecting work-
ers. The model specifies a default model path, overridable at invocation time.

Tool permissions: The tools field explicitly declares which tools the agent may use. This
provides a first layer of capability restriction before effect-based permission generation.

Effect declarations: The declaredEffects field uses a typed effect system with discrimi-
nated unions. Each effect specifies:

e id: A unique identifier for the effect declaration

o effectType: A family/action pair from defined families:

— file: actions read, write, create, modify, delete

external: actions shell_command, api_request, web_fetch

playbook: actions update, increment, add_pattern

custom: escape hatch for domain-specific effects

Implementing Agentic Context Engineering 27

e pathPattern or commandPatterns: Glob patterns or command specifications
e description: Human-readable explanation

e required: Optional flag marking essential effects

Contract specification: The contract field defines both input and output schemas using
JSON Schema. The input schema specifies expected parameters; the output schema specifies
the structure of results.

Custom x- extension fields enable schema annotations beyond standard JSON Schema. For
example, x-extract: fact marks fields for automatic extraction into coordinator summaries,
while x-extract: description identifies fields containing detailed findings. These extensions
enable the orchestrator to intelligently process worker outputs without parsing natural language.

The schema serves as a contract between coordinator and worker where workers return struc-
tured data conforming to the declared schema, serialized using TOON for efficient transmission
(Section 3.2). Type mismatches indicate implementation errors rather than ambiguous commu-
nication.

This schema-based approach represents a step toward what might be called typed agents.
Both inputs and outputs are typed through JSON Schema. Effects are typed through the
discriminated union in effectType. Combined with the algebraic effects mental model de-
scribed in Section 3.5, these specifications provide the raw material for reasoning about agent
composition—though whether this can be developed into a rigorous theory of algebraically typed
agents remains an open question that I find intriguing but have not pursued as of yet.

7 The Learning Loop

The complete learning loop implements the ACE vision of self-improving systems through struc-
tured feedback (Figure 5). Five stages form a cycle that continuously refines the playbook based
on observed outcomes.

Consider the evolution of a pattern through this cycle. A pattern begins with initial ef-
fectiveness counters based on prior experience or expert assessment. During generation, the
agent consults this pattern and records an attribution entry. Upon task completion, feedback
indicates whether the pattern contributed to success. During reflection, the Reflector analyzes
attribution and feedback across sessions correlated with the task. The Curator processes the
resulting curation queue, updating counters to reflect accumulated evidence.

This evidence-based evolution enables patterns that prove useful to rise in prominence while
those that mislead are deprioritized. Patterns whose harmful count exceeds their helpful count
are surfaced as anti-patterns, warning future sessions against their application.

7.1 Hook-Based Promotion

Two hooks promote playbook usage without requiring explicit invocation. The task detection
hook monitors file access patterns and prompts the Generator to establish task correlation
when working within task directories. This ensures attribution is properly linked even when
the Generator does not explicitly invoke task-setting tools.

The guidance hook injects periodic reminders about available playbook tools after a config-
urable number of tool invocations. This promotes pattern consultation in sessions that might
otherwise proceed without querying the playbook. The hook suppresses reminders when the
Generator is already actively using playbook tools, avoiding redundant prompting.

Implementing Agentic Context Engineering 28

Generation
Execute task with playbook

Attribution
Track pattern usage

Evolved playbook

Feedback
Report effectiveness

Reflection
Analyze session memory

Curation
Apply merged updates

Figure 5: The ACE learning loop. Generation uses patterns; attribution tracks usage; feedback
reports outcomes; reflection analyzes effectiveness; curation updates the playbook.

7.2 Orchestrator Integration

The reflection workflow integrates with the orchestrator (Section 3) to coordinate the Reflector
and Curator agents. The workflow begins by discovering sessions correlated with the target
task through metadata queries. Attribution and feedback records from discovered sessions are
merged to provide the Reflector with a comprehensive view of pattern effectiveness.

The Reflector analyzes merged data to identify successful strategies and recurring failures.
Its output includes proposed curation operations such as counter increments based on feedback,
new patterns distilled from successful trajectories, and merge recommendations for semantically
similar entries. The Curator validates these proposals against the deduplication system and
applies the merged queue atomically.

7.3 Extension Mechanisms and Context Economy

Coding agents tend to exposes three extension points beyond agents, and I have found it useful
to think carefully about when to use each. The fundamental principle is providing the right
context at the right time, Anthropic [Ant25b], and each mechanism addresses this differently.

Hooks steer the coding agent by injecting context at composition boundaries: before or af-
ter tool invocations, at session start, when prompts are submitted. The task detection hook
mentioned above is typical: it monitors file access patterns and triggers attribution setup with-
out requiring the agent to remember to do so. Hooks operate outside the main conversation,
injecting guidance without consuming tokens in the primary context window. They are the
mechanism for automatic steering: ensuring certain behaviors happen reliably without depend-
ing on the agent to initiate them. OpenCode does not expose hooks as a first-class concept, but
its plugin architecture allows implementing equivalent functionality, and more, since plugins
can intercept and transform at additional points in the execution lifecycle.

Commands define predefined workflows. When a user types /research, /plan, /implement,

Implementing Agentic Context Engineering 29

or /reflect, they invoke a command that coordinates the corresponding workflow. Commands
encode the phased methodology I have described throughout this report; each command repre-
sents a well-defined entry point into a particular kind of work. The distinction from hooks is that
commands require explicit user invocation; they are deliberate actions rather than automatic
steering.

Skills package domain knowledge, e.g., expertise about programming languages, testing
methodologies, design patterns, or project conventions. Skills differ from playbook patterns
in that they represent relatively stable expertise rather than evolving heuristics learned from
task outcomes. A practical problem I encountered is that skills do not always load reliably;
the agent may not consult relevant skills unless prompted. Commands solve this by routing
to skills explicitly: the /research command loads the research skill, /implement loads the
implementation skill, and so on. This combination ensures that domain knowledge is available
when the corresponding workflow begins.

These distinctions connect back to the context economy discussion in Section 2.3. The main
conversation thread is expensive context that should be protected from pollution. Hooks inject
focused steering without polluting that context (this also requires hooks to be almost surgical
in their definition). Commands, in our implementation, often delegate to orchestrated sessions,
returning only what matters. Skills get loaded when relevant workflows begin. I am not sure
this decomposition is optimal—there may be better ways to carve up the space—but it has
worked reasonably well so far.

8 The Workflow in Practice

The preceding sections describe architecture and theory. This section provides a concrete ex-
ample of how I utilize the systems I have built on a day-to-day basis, tracing the flow from task
initiation through playbook evolution. I want to be concrete about the directory structures, the
artifacts produced, and especially about where human judgment enters the process.

8.1 Phase Structure and Human Oversight

My daily work proceeds through tasks and each task consists principally of four distinct phases:
research, planning, implementation, and reflection. Over time I have noticed that these phases
differ not only in purpose but in their relationship to human oversight, and this distinction has
shaped how I think about automation boundaries.

Research and reflection are what I would call post-hoc reviewable. The orchestrator co-
ordinates multiple agents working in parallel, accumulating results across iterations. I review
the outputs after completion. If the research missed something important, I can edit the obser-
vations, run additional investigation, or discard the results entirely before moving to planning.
Reflection operates differently: the workflow runs the Reflector and Curator in sequence, apply-
ing pattern updates and producing a summary of exactly which changes were made. I review
this summary afterward and can revert unwanted changes through version control or manual
editing. The key distinction is that research produces drafts I approve before the next phase,
while reflection produces applied changes I can audit and undo.

On the other hand, planning and implementation are different in character. Planning is
interactive: the agent works from research findings but asks me clarifying questions about
design choices, architectural direction, and priorities based on what the research revealed. This
back-and-forth dialogue—what the HumanLayer project might call human-in-the-loop—shapes
the plan before it solidifies. Planning decisions compound; an early architectural choice shapes
all subsequent phases, and I want to influence those choices through dialogue rather than merely
accept or reject a finished artifact. Implementation, by contrast, has immediate effects as files
are written, tests run, and commits are created. I watch the execution and intervene when

Implementing Agentic Context Engineering 30

verification fails or the agent does something that is obviously wrong, but the key human
judgment already occurred during planning. The more comprehensive the plan the less need
there is to be vigilant in implementing as the plan should already capture every minute and
important detail.

This distinction then shapes the execution model. For example, research spawns agents via
the orchestrator’s coordinator loop (Section 3), enabling parallel exploration where a codebase
analyzer, web researcher, and pattern finder might work simultaneously. The coordinator aggre-
gates their findings into working memory, producing comprehensive observations that no single
agent could assemble in isolation (and would be too much context for one agent to do on its
own). Reflection similarly benefits from the coordinator’s ability to process evidence trails, git
changes, and pattern attributions in parallel before synthesizing conclusions.

Planning and implementation use the main conversation thread. I read the research obser-
vations, and work with the agent through dialogue: it proposes approaches, it asks clarifying
questions, and we iterate until the plan reflects my intent. The agent might ask “should we
prioritize backwards compatibility or clean breaks?” and my answer shapes all subsequent
phases. During implementation, I approve each phase before it begins, confirm completions,
and intervene when verification fails.

8.2 Directory Structure and State Flow

Two directory hierarchies support the above workflow in the following way: the task directory
containing human artifacts, and the session directory containing machine state. I found this
separation important for understanding how work persists across sessions and how the learning
loop operates, so I will describe both in detail.

8.2.1 Task Directory

Each task lives in a directory under ace/tasks/, named by date and a descriptive slug. The
directory accumulates artifacts as work progresses:

ace/tasks/2025-11-08-tailwind-v4-lisp-migration/
| -- research.md
| -- observations-research-2025-11-08T14-30-00.md
| -- observations-planning.md
|-- plan.md
| -- observations-implementation.md
| -- observations-reflect-2025-11-12T16-00-00.md
| -- handoffs/
| -- screenshots/
-- runs/
|-- 001-research-20251108T143000-a1b2/
| |-- logs/
| |-- state/
| |-- telemetry/
| “-- worker-outputs/
“-- 002-reflect-20251112T160000-c3d4/
|-- logs/
|-- state/
|-- telemetry/
“-- worker-outputs/

The human-facing artifacts at the task root are:
e research.md: Synthesized research document produced by the coordinator.

e observations-research-*.md: Timestamped log of the research workflow execution.

Implementing Agentic Context Engineering

31

e observations-planning.md: Planning decisions and identified gaps.
e plan.md: Implementation plan with phased structure and verification criteria.
e observations-implementation.md: Log of implementation progress.

e observations-reflect-*.md: Timestamped log of the reflection workflow.

e handoffs/: Session transfer documents for resuming work.
o screenshots/: Visual verification artifacts.

o runs/: Orchestrator execution state (machine-managed).

Research produces two distinct artifacts, and this design choice took some time to materialize.
The research-{topic}.md file is the synthesized document, i.e., the coordinator’s final output
presenting findings in a structured, readable format suitable for consumption by the planning

phase. The observations-research-*.md file is the execution log: a timestamped record of

what happened during the workflow, showing each iteration’s progress, which workers succeeded

or failed, and how the coordinator reasoned about what to investigate next.

I find the observation log valuable for understanding how conclusions were reached. When
research produces surprising results, I can trace back through the iterations to see what evidence
led to those conclusions. It is especially useful for tracing through how incorrect information
poisons later phases and thinking about how we can mitigate it from happening. An abridged

sample from a real research workflow illustrates the format:

Observation Log: research

*xStarted**: 2025-11-08T14:30:00.000Z
Workflow: research

Query

How can we migrate from custom stylesheets to Tailwind v4 implemented
in Lisp for better composability and maintainability?

Iteration 1
Timestamp: 2025-11-08T14:32:41.4827Z
Progress
- **Dual styling system discovered**
- Evidence: “static/css/ (30+ files), src/components/ (21 files)"
- Confidence: high
- x*xLegacy CSS uses ITCSS layers with BEM naming*x*
- Evidence: “static/css/0Ol1-foundations/, 02-utilities/, ...~
- Confidence: high
Remaining

- What is the architecture of the new component library? [BLOCKING]
- How does Tailwind v4 integrate with the build system? [BLOCKING]

Assessment

achieved_primary_goal	false
have_sufficient_evidence	false
confidence	low

*x*Workers Decided**: codebase-analyzer, web-researcher, pattern-finder

Implementing Agentic Context Engineering 32

Iteration 2

Timestamp: 2025-11-08T14:35:01.250Z
Input (from previous iteration)
Workers: 3/3 succeeded

Progress

- **Component library uses pure functions, not macrosx*x
- Evidence: “src/components/utils/generators.lisp:1-200°"
- Confidence: high
- **Four-layer architecture: tokens -> validation -> generators -> semantic**
- Evidence: “src/components/{tokens,utils,primitives,composed}/"
- Confidence: high
- **Tailwind v4 uses CSS-first configurationx*x*
- Evidence: “Web research: Tailwind v4 documentation”
- Confidence: high
- *x131 passing tests in component libraryx**
- Evidence: "nix build .#lsc-web.tests’
- Confidence: high

Remaining
- Which pages are already migrated vs legacy? [BLOCKING]

Workers Decidedx: codebase-locator

Iteration 3

xTimestamp: 2025-11-08T14:37:15.000Z

Input (from previous iteration)

*xWorkers**: 1/1 succeeded

Progress

[All previous items retained]

- **Contact page fully migrated to component libraryx**
- Evidence: “src/content/contact.lisp:17-172"
- Confidence: high

- **8ix pages still using legacy CSS**
- Evidence: ~“src/pages.lisp inline class analysis’

- Confidence: high

Assessment

achieved_primary_goal	true
have_sufficient_evidence	true
confidence	high

**Should Continuex*: false

The structured format—iterations with timestamps, progress items citing evidence and con-
fidence levels, blocking items that drive worker selection, worker success and failure reporting—
provides what I think of as accountability for the orchestrator’s decisions. If the coordinator
made a questionable choice about which agents to spawn or when to terminate, I can see the
reasoning that led there.

The handoffs/ directory also deserves mention. When I need to end a session mid-task (due
to context filling up or needing to step away), I invoke the /handoff command, Horthy and
HumanLayer [HH25], to create a transfer document capturing context that cannot be inferred
from the artifacts alone, e.g., what has been discussed in the conversation, what the current
blockers are, what should happen next. A new session can read the handoff and resume work
with minimal context loss (at least when you also combine it with the detailed plan).

Implementing Agentic Context Engineering 33

The runs/ directory contains the orchestrator’s internal execution state, organized by invo-
cation. Each run directory is named with a sequence number, workflow type, timestamp, and
short identifier:

runs/001-research-20251108T143000-al1b2/

|-- logs/

| "-- research-2025-11-08T14-30-00.1log
|-- state/

| -- iteration-state. json

|-- telemetry/

| "-- research-2025-11-08T14-30-00. json
“-- worker-outputs/

|-- 001-codebase-locator. json

|-- 002-codebase-analyzer. json

|-- 002-pattern-finder. json

|-- 002-web-researcher. json

"-- 003-codebase-locator. json

The subdirectories serve distinct purposes:

logs/: Execution logs for the workflow.
o state/: Coordinator working memory (accumulated facts, summaries, iteration state).
e telemetry/: Execution metrics for workflow improvement analysis.

e worker-outputs/: Typed outputs from each agent, named by iteration number and agent
name.

I find the worker-outputs/ particularly useful for debugging when an agent returns unex-
pected results; I can inspect the raw typed output to understand what went wrong.

8.2.2 Session Directory

Separately from the task directory, each conversation session maintains state in . sessions/${sessionId}/.
This is the session evidence trail described in Section 6:

.sessions/alb2c3d4-e5f6-7890-abcd-ef1234567890/
|-- session.json
“-- memory/

|-- attribution. json

|-- feedback. json

"-- curation-queue. json

The session evidence trail comprises:
e session. json: Session metadata, including task association.
e attribution. json: Records of which playbook patterns were consulted.
o feedback. json: Effectiveness assessments recorded during the session.
e curation-queue. json: Pending playbook updates awaiting reflection.

The session directory links to tasks via playbook_set_task, which records the association in
session. json. This link is what enables the Reflector to correlate evidence trail entries with

task artifacts during reflection, since it knows which task the attributions and feedback belong
to.

Implementing Agentic Context Engineering 34

8.2.3 State Flow Across Phases

I find it helpful to trace how state flows across the four phases, since this clarifies what ends up
where and why the task directory and session directory serve complementary roles.

1. Research: The orchestrator creates a run directory under the task’s runs/. Worker out-
puts accumulate there. The coordinator synthesizes findings into research-{topic}.md
in the task directory. If any patterns are consulted during research, attribution entries
are written to the session’s .sessions/${sessionId}/memory/attribution. json.

2. Planning: The main thread reads research-{topic}.md and queries the playbook for
relevant patterns. Each consultation adds an attribution entry to the session directory.
The agent produces plan.md in the task directory, often with explicit pattern references
like “per pattern [ace-000017]".

3. Implementation: The main thread executes plan phases. observations-implementation.md
grows as work progresses. Attribution entries continue accumulating in the session di-
rectory; feedback entries (recording whether patterns helped or hurt) are written to
feedback. json. If I end the session mid-task, a handoff document is written to the
task’s handoffs/.

4. Reflection: The orchestrator creates another run directory. The Reflector reads both
the task artifacts and the session’s evidence trail. Curation proposals queue in curation-
queue.json. The Curator processes this queue and applies changes atomically to the
playbook.

The task directory persists indefinitely as the historical record of what was done. The session
directory persists until reflection processes it; afterward, the evidence has been incorporated
into the playbook and I can archive or remove the session directory.

8.3 Playbook Integration Points

The playbook participates at specific points in each phase. I want to be concrete about these
integration points because they are where the learning loop becomes tangible.

Research. Before dispatching agents, the coordinator calls playbook_search with terms rel-
evant to the task domain. Retrieved patterns get injected into agent prompts as additional
context, biasing investigation toward areas where I have prior knowledge. The orchestrator also
calls playbook_set_task to establish the session-task linkage that reflection will need later.

Planning. The agent invokes playbook_search and playbook_proven to retrieve patterns
relevant to implementation strategy. Each consultation gets recorded via playbook_applied,
creating attribution entries in session memory. The plan document itself references patterns by
identifier—for instance, “per pattern [ace-000017], implement phase-by-phase with verifica-
tion gates”—making the influence explicit and traceable. I review the plan and can see which
patterns shaped the approach.

Implementation. When a pattern actively guides a decision, the agent records attribution.
When a phase completes, the agent or I may record feedback via playbook_feedback. These
entries accumulate in session memory throughout implementation, forming the evidence trail
that reflection will analyze.

Implementing Agentic Context Engineering 35

Reflection. The Reflector reads task artifacts and queries session memory for attribution and
feedback entries. It analyzes this evidence to propose curation operations:

o playbook_increment: Update counters for patterns that contributed to success or failure.

e playbook_add: Propose new patterns distilled from novel solutions, after checking playbook_dedupe
for semantic similarity to existing entries.

e playbook_merge: Recommend consolidating patterns that overlap significantly.

The Curator validates proposals and applies them atomically via playbook_apply_curation.
The playbook evolves, incorporating evidence from the completed task.

8.4 Concrete Example

A CSS migration task from the Lie-Stgrmer Center infrastructure illustrates how these phases
work in practice—though I should note that this is a somewhat idealized reconstruction of what
was, at the time, a messier process. The task was to migrate the website from thirty custom
CSS files to Tailwind classes generated from Lisp functions.

Research. Iinvoked /research and the orchestrator created runs/001-research-20251108T143000—
alb2/. Four agents executed in parallel: a codebase locator found the CSS file structure (ITCSS

layers, BEM naming); a codebase analyzer examined the emerging component library (tokens,
validation, generators); a web researcher gathered Tailwind v4 documentation; a pattern finder
located styling patterns across the repository.

Worker outputs accumulated in worker-outputs/. The coordinator synthesized these into
research.md, documenting a dual styling system: legacy BEM-based CSS alongside a token-
validated component library with passing tests. I reviewed the observations, added annotations
about design quality—which pages had good designs worth preserving, which had broken designs
requiring fixes—and approved advancement to planning.

Planning. In the main thread, the agent read the research document and queried the playbook.
Queries for “phase-by-phase implementation” returned pattern [ace-000017] (helpful=32);
queries for “verification” returned [ace-000052] (helpful=38). The agent recorded both as
applied.

The agent proposed a seven-phase plan: baseline screenshots, simple page migration, complex
page migration, design fixes, template updates, CSS deletion, and final verification. Each
phase specified success criteria. I reviewed the plan, requested adjustments to phase grouping
(batching similar pages), and approved the final version.

Implementation. The execution was not entirely hands-off. I found myself watching more
closely than I had anticipated, particularly during phase 1 when baseline screenshots were
captured and I wanted to verify that the visual quality was adequate for later comparison.
Phase 2 migrated three pages, and here I ran the test suite myself rather than waiting for the
agent to do so, mostly out of impatience. The agent logged decisions and problems encountered
in observations-implementation.md, which proved useful when I later tried to understand
why certain choices had been made.

The pattern attribution machinery worked as designed: when [ace-000017] guided the phase
structure, the agent recorded this, and when phase 2 succeeded we recorded positive feedback
for both patterns that had been consulted. The task spanned multiple days—I do not recall
exactly how many, but at least three—and I created handoff documents in handoffs/ at session
boundaries so that context could be reconstructed later.

Implementing Agentic Context Engineering 36

Reflection. After implementation completed, I invoked /reflect. The orchestrator created
runs/002-reflect-20251112T160000-c3d4/. The Reflector read task artifacts and session
evidence: two patterns applied, both with positive feedback, plus implementation observations
documenting a novel “preserve good, fix broken” design strategy.

The workflow produced a summary and the helpful counters for [ace-000017] and [ace-
000052] incremented as anticipated, but the system also identified a novel pattern in my im-
plementation observations, specifically the “preserve good, fix broken” design strategy.

8.5 Correspondence with the Learning Loop

The four-phase workflow I have described maps, imperfectly but recognizably, onto the five-stage
learning loop from Section 7:

Learning Stage Workflow Participation

Generation Research, planning, and implementation all
generate work while the agent consults the
playbook.

Attribution The agent records pattern consultations via

playbook_applied; implementation is the
primary source.

Feedback Typically recorded after phase completions
during implementation; the agent or I may
record these.

Reflection The /reflect command triggers analysis of
accumulated evidence across all phases.

Curation The Curator applies queued updates atomi-
cally after the reflection document has been
written.

This mapping reveals something I find important: playbook evolution is punctuated rather
than continuous. The playbook remains stable during a task, providing consistent guidance
across phases. Evolution occurs at task boundaries, when reflection processes accumulated
evidence and curation applies the resulting updates.

This punctuated evolution aligns with the session isolation architecture we described in Sec-
tion 6. Evidence accumulates in session-local storage during the task. The playbook file remains
immutable, avoiding the race conditions we analyzed in Proposition 5.12. Only during the ex-
plicit curation phase does the Curator perform the single atomic write that updates the shared
playbook. The deferred curation mechanism ensures consistency (Proposition 5.13) while en-
abling concurrent sessions to operate independently.

9 Discussion

9.1 Relationship to Prior Work

Our implementation draws on several strands of prior research. Zhou et al. [Zho+23] and
Fernando et al. [Fer+23] demonstrated that prompts can be optimized through evolutionary
processes, but their methods suffer from brevity bias as noted by Zhang et al. [Zha+25]. Suzgun
et al. [Suz+25] introduced dynamic cheatsheets that accumulate task-specific knowledge, but
lack the structured curation that prevents context collapse.

Independent of the academic literature, practitioners have developed complementary method-
ologies for managing context in agentic coding systems. Horthy and HumanLayer [HH25] intro-

Implementing Agentic Context Engineering 37

duced the Research-Plan-Implement (RPI) workflow, which structures development into sequen-
tial phases with explicit artifact boundaries. Their concept of frequent intentional compaction
advocates for deliberately condensing findings into structured documents that serve as fresh con-
text windows for subsequent phases, maintaining context utilization within manageable bounds.
Our implementation builds upon this foundation, extending the RPI workflow with a fourth
phase for reflection that enables the playbook evolution central to ACE. We adopt their handoff
document pattern for session transfer and their phased artifact structure for organizing task
directories.

The ACE framework synthesizes these approaches through the three-role architecture, and
our implementation extends it with session isolation and deferred curation that enable practical
deployment in concurrent environments.

9.2 Cost Considerations

Zhang et al. [Zha+25] argue that longer contexts do not necessarily translate to linearly higher
inference cost. They note that modern serving infrastructures employ KV cache reuse, compres-
sion, and offload techniques that amortize the cost of long contexts, and that ongoing advances
in ML systems suggest this amortized cost will continue to decrease. We have not independently
verified these claims through measurement.

In our implementation, the tool-based interface means that only relevant pattern subsets are
retrieved and processed. A session that queries for methodology patterns does not pay the cost
of loading language-specific or domain-specific entries that are irrelevant to the current task.

9.3 Limitations

We emphasize that this report describes a working implementation rather than a rigorously
evaluated system. Our assessment of the architecture’s effectiveness is based entirely on practical
experience during development; we have not conducted controlled experiments comparing the
approach against alternatives. The orchestrator plugin remains under active development, and
the design continues to evolve as we encounter new requirements. What we can report is
that the architecture aligns well with how we think about complex development tasks: the
phased workflow matches our natural decomposition of problems, and the playbook evolution
mechanism captures insights that would otherwise be lost between sessions.

The effectiveness of this implementation depends on the quality of the Reflector’s analysis.
In domains where models cannot extract useful insights from trajectories, the accumulated
context may become noisy. Additionally, the deferred curation mechanism introduces latency
between pattern application and playbook update; patterns proven effective in one session may
not benefit subsequent sessions until the next reflection cycle.

9.4 Future Directions

Several extensions warrant investigation. Depth-limited recursion could allow workers to spawn
sub-workers for complex decomposition tasks, moving beyond the current two-level constraint
(Section 3.3). Cross-task analysis could aggregate pattern effectiveness across multiple tasks
to identify domain-wide strategies. Selective unlearning could use context interpretability tech-
niques to remove outdated or incorrect information in response to evolving requirements.

Two fundamental challenges remain unresolved, and they are inherently linked. Sycophancy
undermines the feedback mechanism: current models tend not to increment harmful counters
even when patterns lead to poor outcomes, as they avoid negative assessments of their own prior
suggestions. This directly causes context poisoning: the theoretical correction mechanism
relies on harmful counter increments to eventually remove bad patterns, but since sycophantic

Implementing Agentic Context Engineering 38

models do not provide negative feedback, harmful patterns persist indefinitely. In our implemen-
tation, we observed harmful counters remain at zero regardless of actual pattern effectiveness,
allowing incorrect or misleading patterns to accumulate without correction. Addressing this
limitation likely requires advances in model calibration and self-critique capabilities; until then,
human oversight of playbook content remains essential.

10 Conclusion

This report has presented an implementation of Agentic Context Engineering that addresses
the brevity bias and context collapse limitations identified in prior work. The session-based
evidence trail architecture enables concurrent operation without race conditions. Deferred cu-
ration maintains single-writer semantics while preserving the evidence trail required for reflec-
tion. The tool-based interface implements the environment paradigm advocated by recursive
language model research, treating the playbook as an external variable rather than a prompt
component.

The implementation demonstrates that comprehensive, evolving contexts can be maintained
efficiently in practical systems. By treating playbooks as living documents that accumulate
evidence-based insights, the system creates a closed learning loop: generation applies patterns,
attribution tracks usage, feedback reports outcomes, reflection analyzes effectiveness, and cura-
tion updates the playbook.

Several observations from this work seem worth recording, though I am uncertain which will
prove most important. The distinction between human artifacts and machine-managed state—
plans and observations belonging to the human workflow, run directories and evidence trails
being implementation details—proved essential in practice, even though I did not anticipate
its importance when designing the system. It turns out that knowing what belongs to whom
matters more than I expected.

The environment paradigm, accessing context through tools rather than embedding it in
prompts, is not merely an optimization. I had initially thought of it as a way to reduce token
costs, but it has become clear that this is a fundamental architectural choice that determines
whether the system can scale at all. The alternative—embedding ever-growing playbooks in
prompts—simply does not work beyond a certain size.

The most sobering realization concerns model sycophancy. The theoretical elegance of feedback-
driven curation collides with the practical reality that models are not reliable critics of their
own prior suggestions. Until this changes, self-improvement mechanisms will require human
oversight to prevent what I have come to think of as context poisoning: the gradual accumu-
lation of plausible-sounding but unhelpful patterns. The harmful counter, for its part, remains
optimistic.

References

[Ant25a] Anthropic. Claude Code: An Agentic Coding Tool. https://docs.anthropic.com/
en/docs/claude-code. CLI tool for agentic coding with Claude. Enforces two-level
agent composition: agents spawned via Task tool cannot recursively spawn further
agents. 2025. URL: https://docs.anthropic.com/en/docs/claude-code.

[Ant25b] Anthropic. Effective Context Engineering for AI Agents. Anthropic Engineering
Blog. Published 2025-09-29. Describes mode separation, just-in-time context load-
ing, and context compaction strategies. Sept. 2025. URL: https://www.anthropic.
com/engineering/effective-context-engineering-for-ai-agents.

https://docs.anthropic.com/en/docs/claude-code
https://docs.anthropic.com/en/docs/claude-code
https://docs.anthropic.com/en/docs/claude-code
https://www.anthropic.com/engineering/effective-context-engineering-for-ai-agents
https://www.anthropic.com/engineering/effective-context-engineering-for-ai-agents

Implementing Agentic Context Engineering 39

[Ant25c| Anthropic. Effective Harnesses for Long-Running Agents. Anthropic Engineering
Blog. Published 2025-11-26. Introduces initializer /coding agent pattern and artifact-
based handoffs for maintaining agent coherence across sessions. Nov. 2025. URL:
https://www.anthropic.com/engineering/effective-harnesses-for-long-
running-agents.

[Fer+23] Chrisantha Fernando et al. Promptbreeder: Self-Referential Self-Improvement Via
Prompt Evolution. 2023. arXiv: 2309.16797 [cs.CL]. URL: https://arxiv.org/
abs/2309.16797.

[HH25] Dex Horthy and HumanLayer. Advanced Context Engineering for Coding Agents.
GitHub repository. Introduces the Research-Plan-Implement workflow for structured
AT development. Aug. 2025. URL: https://github.com/humanlayer/advanced-
context-engineering-for-coding-agents.

[Leil4] Daan Leijen. “Koka: Programming with Row Polymorphic Effect Types”. In: Math-
ematically Structured Functional Programming (MSFP 2014). Vol. 153. Electronic
Proceedings in Theoretical Computer Science. Introduced row-polymorphic effect
types enabling compositional effect systems. 2014, pp. 100-126. pOI: 10 . 4204/
EPTCS.153.8.

[nLa26a] nLab authors. Action. Revision 78. 2026. URL: https://ncatlab.org/nlab/show/
action (visited on 01/07/2026).

[nLa26b] nLab authors. Action groupoid. Revision 35. 2026. URL: https://ncatlab.org/
nlab/show/action+groupoid (visited on 01/07/2026).

[nLa26c] nLab authors. Direct sum. Revision 35. 2026. URL: https://ncatlab.org/nlab/
show/direct+sum (visited on 01/07/2026).

[nLa26d] nLab authors. Pushout. Revision 33. 2026. URL: https://ncatlab.org/nlab/show/
pushout (visited on 01/07/2026).

[nLa26e] nLab authors. Restricted direct product. Revision 7. 2026. URL: https://ncatlab.
org/nlab/show/restricted+direct+product (visited on 01/07/2026).

[PP03] Gordon Plotkin and John Power. “Algebraic Operations and Generic Effects”. In: Ap-
plied Categorical Structures 11.1 (2003). Established categorical foundations: generic
effects are equivalent to algebraic operations, pp. 69-94. DOI: 10.1023/A:1023064908962.

[PPOS] Gordon D. Plotkin and John Power. “Tensors of Comodels and Models for Opera-
tional Semantics”. In: Mathematical Foundations of Programming Semantics (MFPS
XXI1V). Vol. 218. Comodels capture external world interactions; tensoring with mod-
els produces execution semantics. 2008, pp. 295-311. DOI: 10.1016/j.entcs.2008.
10.018.

[PP13] Gordon D. Plotkin and Matija Pretnar. “Handling Algebraic Effects”. In: Logical
Methods in Computer Science 9.4 (2013). Definitive reference for effect handlers.
Covers exceptions, state, nondeterminism, 1/O, concurrency. DOI: 10.2168/LMCS-
9(4:23)2013.

[Sha+11] Marc Shapiro et al. A Comprehensive Study of Convergent and Commutative Repli-
cated Data Types. Tech. rep. RR-7506. Establishes convergence theorems for state-
based and operation-based CRDTs. INRIA, 2011. URL: https://pages.1lip6.fr/
Marc.Shapiro/papers/RR-7687 .pdf.

[SST26] SST. OpenCode: The Open Source AI Coding Agent. https://opencode.ai. Open
source Al coding agent supporting 754+ LLM providers across terminal, IDE, and
desktop environments. 2026. URL: https://opencode.ai.

https://www.anthropic.com/engineering/effective-harnesses-for-long-running-agents
https://www.anthropic.com/engineering/effective-harnesses-for-long-running-agents
https://arxiv.org/abs/2309.16797
https://arxiv.org/abs/2309.16797
https://arxiv.org/abs/2309.16797
https://github.com/humanlayer/advanced-context-engineering-for-coding-agents
https://github.com/humanlayer/advanced-context-engineering-for-coding-agents
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.4204/EPTCS.153.8
https://ncatlab.org/nlab/show/action
https://ncatlab.org/nlab/show/action
https://ncatlab.org/nlab/show/action+groupoid
https://ncatlab.org/nlab/show/action+groupoid
https://ncatlab.org/nlab/show/direct+sum
https://ncatlab.org/nlab/show/direct+sum
https://ncatlab.org/nlab/show/pushout
https://ncatlab.org/nlab/show/pushout
https://ncatlab.org/nlab/show/restricted+direct+product
https://ncatlab.org/nlab/show/restricted+direct+product
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1016/j.entcs.2008.10.018
https://doi.org/10.1016/j.entcs.2008.10.018
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.2168/LMCS-9(4:23)2013
https://pages.lip6.fr/Marc.Shapiro/papers/RR-7687.pdf
https://pages.lip6.fr/Marc.Shapiro/papers/RR-7687.pdf
https://opencode.ai
https://opencode.ai

Implementing Agentic Context Engineering 40

[Suz+25] Mirac Suzgun et al. Dynamic Cheatsheet: Test-Time Learning with Adaptive Mem-
ory. 2025. arXiv: 2504.07952 [cs.LG]. URL: https://arxiv.org/abs/2504.07952.

[TOO25] TOON Contributors. TOON: Token-Oriented Object Notation. GitHub repository.
Compact, schema-aware serialization format achieving approximately 40% token
reduction compared to JSON while maintaining explicit structure for LLM applica-
tions. 2025. URL: https://github.com/toon-format/toon.

[Zha+25] Qizheng Zhang et al. Agentic Context Engineering: Evolving Contexts for Self-
Improving Language Models. 2025. arXiv: 2510 .04618 [cs.LG]. URL: https://
arxiv.org/abs/2510.04618.

[Zho+23] Yongchao Zhou et al. Large Language Models Are Human-Level Prompt Engineers.
2023. arXiv: 2211.01910 [cs.LG]. URL: https://arxiv.org/abs/2211.01910.

[ZKK25] Alex L. Zhang, Tim Kraska, and Omar Khattab. Recursive Language Models. 2025.
arXiv: 2512.24601 [cs.AI]. URL: https://arxiv.org/abs/2512.24601.

https://arxiv.org/abs/2504.07952
https://arxiv.org/abs/2504.07952
https://github.com/toon-format/toon
https://arxiv.org/abs/2510.04618
https://arxiv.org/abs/2510.04618
https://arxiv.org/abs/2510.04618
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2512.24601
https://arxiv.org/abs/2512.24601

	Introduction
	The Three-Role Architecture
	Contributions
	Prior Approach

	System Context
	The Orchestration Framework
	Workflow Execution Model
	Context Management Considerations
	Task Organization
	Relationship to Prior Work

	Orchestrator Architecture
	Execution Model
	The Coordinator Pattern
	Composition Constraints
	Prompt Composition
	Permission Model
	Tools as Effects, Implementations as Handlers
	Agent Effect Declarations
	Effect Composition Through Workflows
	Toward Typed Agents
	The Two-Level Rule as Effect Restriction
	What I Cannot Yet Formalize
	Why I Include This Sketch

	Theoretical Foundation
	The Environment Paradigm
	Implications for Playbook Design
	Session Isolation and Deferred Mutation

	Design Evolution
	The Previous Implementation
	Limitations Observed in Practice
	Theoretical Analysis of Concurrent Access
	Orchestrator Refinement
	Insights from Recursive Language Models
	The Current Implementation

	Architecture
	Playbook Store
	Session Evidence Trail
	Tool Interface
	Agent Definition Schema

	The Learning Loop
	Hook-Based Promotion
	Orchestrator Integration
	Extension Mechanisms and Context Economy

	The Workflow in Practice
	Phase Structure and Human Oversight
	Directory Structure and State Flow
	Task Directory
	Session Directory
	State Flow Across Phases

	Playbook Integration Points
	Concrete Example
	Correspondence with the Learning Loop

	Discussion
	Relationship to Prior Work
	Cost Considerations
	Limitations
	Future Directions

	Conclusion
	References

